85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431 | def circ_plot(
circ_data,
ax=None,
config=None,
):
"""Plots circular data with various visualization options.
Parameters
----------
circ_data : Circular
A Circular object containing the data to plot.
ax : matplotlib.axes._axes.Axes, optional
The axis to plot on. If None, a new figure is created.
config : dict, optional
Configuration dictionary that overrides defaults.
- **"figsize"** : tuple, default=(5, 5)
Size of the figure in inches.
- **"projection"** : str, default="polar"
Type of projection used for the plot.
- **"grid"** : bool, default=True
Whether to display grid lines.
- **"spine"** : bool, default=False
Whether to show the polar spine.
- **"axis"** : bool, default=True
Whether to display the axis.
- **"outward"** : bool, default=True
Determines whether scatter points are plotted outward or inward.
- **"zero_location"** : str, default="N"
The reference direction for 0 degrees (e.g., "N", "E", "S", "W").
- **"clockwise"** : int, default=-1
Direction of angle increase: -1 for clockwise, 1 for counterclockwise.
- **"radius"** : dict
Controls radial axis settings:
- **"ticks"** : list, default=[0, 1]
Radial tick values.
- **"lim_max"** : float or None, default=None
Maximum radial axis limit.
- **"scatter"** : dict
Controls scatter plot settings:
- **"marker"** : str, default="o"
Marker style for scatter points.
- **"color"** : str, default="black"
Color of scatter points.
- **"size"** : int, default=10
Size of scatter markers.
- **"r_start"** : float, default=1
Starting radius for scatter points.
- **"rose"** : dict
Controls rose diagram settings:
- **"bins"** : int, default=12
Number of bins for histogram.
- **"counts"** : bool, default=False
Whether to display counts on bars.
- **"density"** : dict or bool
Controls density estimation settings:
- **If False**, disables density plotting.
- **If True**, uses default settings.
- **If dict**, allows customization:
- **"method"** : str, default="nonparametric"
Method for density estimation ("nonparametric" or "MovM").
- **"color"** : str, default="black"
Color of the density line.
- **"linestyle"** : str, default="-"
Line style of the density plot.
- **"mean"** : dict or bool
Controls mean direction plotting:
- **If False**, disables mean plot.
- **If True**, uses default settings.
- **If dict**, allows customization:
- **"color"** : str, default="black"
Color of the mean line.
- **"linestyle"** : str, default="-"
Line style of the mean plot.
- **"kind"** : str, default="arrow"
Type of mean representation.
- **"ci"** : bool, default=True
Whether to display mean confidence intervals.
- **"median"** : dict or bool
Controls median direction plotting:
- **If False**, disables median plot.
- **If True**, uses default settings.
- **If dict**, allows customization:
- **"color"** : str, default="black"
Color of the median line.
- **"linestyle"** : str, default="dotted"
Line style of the median plot.
- **"ci"** : bool, default=True
Whether to display median confidence intervals.
Returns
-------
ax : matplotlib.axes._axes.Axes
The matplotlib Axes object containing the plot.
"""
# Merge user config with defaults recursively
config = _merge_dicts(DEFAULT_CIRC_PLOT_CONFIG, config or {})
# check axes
if ax is None:
fig, ax = plt.subplots(
figsize=config["figsize"],
subplot_kw={"projection": config["projection"]},
layout="constrained",
)
# plot
if not circ_data.grouped:
# plot scatter
alpha, counts = np.unique(circ_data.alpha.round(3), return_counts=True)
alpha = np.repeat(alpha, counts)
if config["outward"]:
radii = np.hstack(
[
config["scatter"]["r_start"]
+ 0.05
+ np.arange(0, 0.05 * int(f), 0.05)[: int(f)]
for f in counts
]
)
else:
radii = np.hstack(
[
config["scatter"]["r_start"]
- 0.05
- np.arange(0, 0.05 * int(f), 0.05)[: int(f)]
for f in counts
]
)
ax.scatter(
alpha, radii,
marker=config["scatter"]["marker"],
color=config["scatter"]["color"],
s=config["scatter"]["size"]
)
# plot density
if config["density"]: # and not np.isclose(circ_data.r, 0):
density_method = config["density"].get("method", "nonparametric")
density_color = config["density"].get("color", "black")
density_linestyle = config["density"].get("linestyle", "-")
if density_method == "nonparametric":
h0 = config["density"].get(
"h0", compute_smooth_params(circ_data.r, circ_data.n)
)
x, f = nonparametric_density_estimation(circ_data.alpha, h0)
elif density_method == "MovM":
x = np.linspace(0, 2 * np.pi, 100)
f = circ_data.mixture_opt.predict_density(x=x, unit="radian")
else:
raise ValueError(
f"`{config['density']['method']}` in `density` is not supported."
)
# save density to circ_data
circ_data.density_x = x
circ_data.density_f = f
f_ = f + 1.05 # add the radius of the plotted circle
ax.plot(
x,
f_,
color=density_color,
linestyle=density_linestyle,
)
if config["radius"]["lim_max"] is None:
ax.set_ylim(0, f_.max())
else:
ax.set_ylim(0, config["radius"]["lim_max"])
else:
if config["radius"]["lim_max"] is None:
ax.set_ylim(0, radii.max() + 0.025)
else:
ax.set_ylim(0, config["radius"]["lim_max"])
# plot rose diagram
if config["rose"]:
if not circ_data.grouped:
alpha = circ_data.alpha
w, beta = np.histogram(
alpha, bins=config["rose"]["bins"], range=(0, 2 * np.pi)
) # np.histogram return bin edges
beta = 0.5 * (beta[:-1] + beta[1:])
else:
w = circ_data.w
beta = circ_data.alpha
w_sqrt = np.sqrt(w)
w_norm = w_sqrt / w_sqrt.max()
width = config.get("width", 2 * np.pi / len(beta))
bars = ax.bar(
beta,
w_norm,
width=width,
color=config["rose"]["color"],
ec=config["rose"]["edgecolor"],
alpha=config["rose"]["alpha"],
bottom=0,
zorder=2,
)
if config["rose"]["counts"]:
for i, v in enumerate(w):
angle = rotation = beta[i].round(3)
if angle >= np.pi / 2 and angle < 3 * np.pi / 2:
# alignment = "right"
rotation = rotation + np.pi
# else:
# alignment = "left"
if v != 0:
ax.text(
x=angle,
y=bars[i].get_height() - 0.075,
s=str(v),
ha="center",
va="center",
rotation=rotation,
rotation_mode="anchor",
color="black",
)
if circ_data.grouped and config["density"]:
x = np.linspace(0, 2 * np.pi, 100)
f = circ_data.mixture_opt.predict_density(x=x, unit="radian") + 1
ax.plot(x, f, color="black", linestyle="-")
if config["rlim_max"] is None:
ax.set_ylim(0, f.max())
else:
ax.set_ylim(0, config["rlim_max"])
else:
w = circ_data.w
config["radius"]["ticks"] = [1] # overwrite
if config["mean"]:
radius = circ_data.r
ax.plot(
[0, circ_data.mean],
[0, radius],
color=config["mean"].get("color", "black"),
ls=config["mean"].get("linestyle", "-"),
label="mean",
zorder=5,
)
if config["mean"]["ci"]:
if circ_data.mean_lb < circ_data.mean_ub:
x1 = np.linspace(circ_data.mean_lb, circ_data.mean_ub, num=50)
else:
x1 = np.linspace(
circ_data.mean_lb, circ_data.mean_ub + 2 * np.pi, num=50
)
# plot arc
ax.plot(
x1,
np.ones_like(x1) * radius,
ls="-",
color=config["mean"]["color"],
zorder=5,
lw=2,
)
# plot arc cap
ax.errorbar(x1[0], radius, yerr=0.03, capsize=0, color=config["mean"]["color"], lw=2)
ax.errorbar(x1[-1], radius, yerr=0.03, capsize=0, color=config["mean"]["color"], lw=2)
if config["median"]:
ax.plot(
[0, circ_data.median],
[0, 0.95],
color=config["median"]["color"],
ls=config["median"].get("linestyle", "dotted"),
label="median",
zorder=5,
)
if config["median"]["ci"]:
if circ_data.median_lb < circ_data.median_ub:
x1 = np.linspace(circ_data.median_lb, circ_data.median_ub, num=50)
else:
x1 = np.linspace(
circ_data.median_lb, circ_data.median_ub + 2 * np.pi, num=50
)
# plot arc
ax.plot(
x1,
np.ones_like(x1) - 0.05,
ls="dotted",
color=config["median"]["color"],
zorder=5,
lw=2,
)
# plot arc cap
ax.errorbar(x1[0], 0.95, yerr=0.03, capsize=0, color=config["median"]["color"], lw=2)
ax.errorbar(x1[-1], 0.95, yerr=0.03, capsize=0, color=config["median"]["color"], lw=2)
ax.set_theta_zero_location(config["zero_location"])
ax.set_theta_direction(config["clockwise"])
ax.grid(config["grid"])
ax.axis(config["axis"])
ax.spines["polar"].set_visible(config["spine"])
ax.set_rgrids(config["radius"]["ticks"], ["" for _ in range(len(config["radius"]["ticks"]))], fontsize=16)
if circ_data.unit == "hour":
position_major = np.arange(0, 2 * np.pi, 2 * np.pi / 8)
position_minor = np.arange(0, 2 * np.pi, 2 * np.pi / 24)
labels = [f"{i}:00" for i in np.arange(0, circ_data.full_cycle, 3)]
ax.xaxis.set_major_locator(ticker.FixedLocator(position_major))
ax.xaxis.set_minor_locator(ticker.FixedLocator(position_minor))
ax.xaxis.set_major_formatter(ticker.FixedFormatter(labels))
gridlines = ax.yaxis.get_gridlines()
gridlines[-1].set_color("k")
gridlines[-1].set_linewidth(1)
if config["median"] or config["mean"]:
ax.legend(frameon=False)
return ax
|