Skip to content

Circular Distributions

circularuniform_gen

Bases: rv_continuous

Continuous Circular Uniform Distribution

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Source code in pycircstat2/distributions.py
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
class circularuniform_gen(rv_continuous):
    """Continuous Circular Uniform Distribution

    Methods
    -------
    pdf(x)
        Probability density function.

    cdf(x)
        Cumulative distribution function.
    """

    def _pdf(self, x):
        return 1 / np.pi

    def pdf(self, x, *args, **kwargs):
        r"""
        Probability density function of the Circular Uniform distribution.

        $$
        f(\theta) = \frac{1}{\pi}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, *args, **kwargs)

    def _cdf(self, x):
        return x / (2 * np.pi)

    def cdf(self, x, *args, **kwargs):
        r"""
        Cumulative distribution function of the Circular Uniform distribution.

        $$
        F(\theta) = \frac{\theta}{2\pi}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, *args, **kwargs)

    def _ppf(self, q):
        return 2 * np.pi * q

    def ppf(self, q, *args, **kwargs):
        r"""
        Percent-point function (inverse of the CDF) of the Circular Uniform distribution.

        $$
        Q(q) = F^{-1}(q) = 2\pi q, \space 0 \leq q \leq 1
        $$

        Parameters
        ----------
        q : array_like
            Quantiles to evaluate.

        Returns
        -------
        ppf_values : array_like
            Values at the given quantiles.
        """
        return super().ppf(q, *args, **kwargs)

pdf(x, *args, **kwargs)

Probability density function of the Circular Uniform distribution.

\[ f(\theta) = \frac{1}{\pi} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def pdf(self, x, *args, **kwargs):
    r"""
    Probability density function of the Circular Uniform distribution.

    $$
    f(\theta) = \frac{1}{\pi}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, *args, **kwargs)

cdf(x, *args, **kwargs)

Cumulative distribution function of the Circular Uniform distribution.

\[ F(\theta) = \frac{\theta}{2\pi} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def cdf(self, x, *args, **kwargs):
    r"""
    Cumulative distribution function of the Circular Uniform distribution.

    $$
    F(\theta) = \frac{\theta}{2\pi}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, *args, **kwargs)

ppf(q, *args, **kwargs)

Percent-point function (inverse of the CDF) of the Circular Uniform distribution.

\[ Q(q) = F^{-1}(q) = 2\pi q, \space 0 \leq q \leq 1 \]

Parameters:

Name Type Description Default
q array_like

Quantiles to evaluate.

required

Returns:

Name Type Description
ppf_values array_like

Values at the given quantiles.

Source code in pycircstat2/distributions.py
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def ppf(self, q, *args, **kwargs):
    r"""
    Percent-point function (inverse of the CDF) of the Circular Uniform distribution.

    $$
    Q(q) = F^{-1}(q) = 2\pi q, \space 0 \leq q \leq 1
    $$

    Parameters
    ----------
    q : array_like
        Quantiles to evaluate.

    Returns
    -------
    ppf_values : array_like
        Values at the given quantiles.
    """
    return super().ppf(q, *args, **kwargs)

cardioid_gen

Bases: rv_continuous

Cardioid (cosine) Distribution

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Notes

Implementation based on Section 4.3.4 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
class cardioid_gen(rv_continuous):
    """Cardioid (cosine) Distribution

    Methods
    -------
    pdf(x, mu, rho)
        Probability density function.

    cdf(x, mu, rho)
        Cumulative distribution function.

    Notes
    -----
    Implementation based on Section 4.3.4 of Pewsey et al. (2014)
    """

    def _argcheck(self, mu, rho):
        return 0 <= mu <= np.pi * 2 and 0 <= rho <= 0.5

    def _pdf(self, x, mu, rho):
        return (1 + 2 * rho * np.cos(x - mu)) / 2.0 / np.pi

    def pdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Probability density function of the Cardioid distribution.

        $$
        f(\theta) = \frac{1}{2\pi} \left(1 + 2\rho \cos(\theta - \mu)\right), \space \rho \in [0, 1/2]
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Mean resultant length, 0 <= rho <= 0.5.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, rho, *args, **kwargs)

    def _cdf(self, x, mu, rho):
        return (x + 2 * rho * (np.sin(x - mu) + np.sin(mu))) / (2 * np.pi)

    def cdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Cumulative distribution function of the Cardioid distribution.

        $$
        F(\theta) = \frac{\theta + 2\rho (\sin(\mu) + \sin(\theta - \mu))}{2\pi}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Mean resultant length, 0 <= rho <= 0.5.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, rho, *args, **kwargs)

pdf(x, mu, rho, *args, **kwargs)

Probability density function of the Cardioid distribution.

\[ f(\theta) = \frac{1}{2\pi} \left(1 + 2\rho \cos(\theta - \mu)\right), \space \rho \in [0, 1/2] \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Mean resultant length, 0 <= rho <= 0.5.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def pdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Probability density function of the Cardioid distribution.

    $$
    f(\theta) = \frac{1}{2\pi} \left(1 + 2\rho \cos(\theta - \mu)\right), \space \rho \in [0, 1/2]
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Mean resultant length, 0 <= rho <= 0.5.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, rho, *args, **kwargs)

cdf(x, mu, rho, *args, **kwargs)

Cumulative distribution function of the Cardioid distribution.

\[ F(\theta) = \frac{\theta + 2\rho (\sin(\mu) + \sin(\theta - \mu))}{2\pi} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Mean resultant length, 0 <= rho <= 0.5.

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def cdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Cumulative distribution function of the Cardioid distribution.

    $$
    F(\theta) = \frac{\theta + 2\rho (\sin(\mu) + \sin(\theta - \mu))}{2\pi}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Mean resultant length, 0 <= rho <= 0.5.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, rho, *args, **kwargs)

cartwright_gen

Bases: rv_continuous

Cartwright's Power-of-Cosine Distribution

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Implementation based on Section 4.3.5 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
class cartwright_gen(rv_continuous):
    """Cartwright's Power-of-Cosine Distribution

    Methods
    -------
    pdf(x, mu, zeta)
        Probability density function.

    cdf(x, mu, zeta)
        Cumulative distribution function.

    Note
    ----
    Implementation based on Section 4.3.5 of Pewsey et al. (2014)
    """

    def _argcheck(self, mu, zeta):
        return 0 <= mu <= 2 * np.pi and zeta > 0

    def _pdf(self, x, mu, zeta):
        return (
            (2 ** (-1 + 1 / zeta) * (gamma(1 + 1 / zeta)) ** 2)
            * (1 + np.cos(x - mu)) ** (1 / zeta)
            / (np.pi * gamma(1 + 2 / zeta))
        )

    def pdf(self, x, mu, zeta, *args, **kwargs):
        r"""
        Probability density function of the Cartwright distribution.

        $$
        f(\theta) = \frac{2^{- 1+1/\zeta} \Gamma^2(1 + 1/\zeta)}{\pi \Gamma(1 + 2/\zeta)} (1 + \cos(\theta - \mu))^{1/\zeta}
        $$

        , where $\Gamma$ is the gamma function.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        zeta : float
            Shape parameter, zeta > 0.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """

        return super().pdf(x, mu, zeta, *args, **kwargs)

    def _cdf(self, x, mu, zeta):
        @np.vectorize
        def _cdf_single(x, mu, zeta):
            return quad(self._pdf, a=0, b=x, args=(mu, zeta))

        return _cdf_single(x, mu, zeta)

    def cdf(self, x, mu, zeta, *args, **kwargs):
        r"""
        Cumulative distribution function of the Cartwright distribution.

        No closed-form solution is available, so the CDF is computed numerically.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        zeta : float
            Shape parameter, zeta > 0.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, zeta, *args, **kwargs)

pdf(x, mu, zeta, *args, **kwargs)

Probability density function of the Cartwright distribution.

\[ f(\theta) = \frac{2^{- 1+1/\zeta} \Gamma^2(1 + 1/\zeta)}{\pi \Gamma(1 + 2/\zeta)} (1 + \cos(\theta - \mu))^{1/\zeta} \]

, where \(\Gamma\) is the gamma function.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
zeta float

Shape parameter, zeta > 0.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
def pdf(self, x, mu, zeta, *args, **kwargs):
    r"""
    Probability density function of the Cartwright distribution.

    $$
    f(\theta) = \frac{2^{- 1+1/\zeta} \Gamma^2(1 + 1/\zeta)}{\pi \Gamma(1 + 2/\zeta)} (1 + \cos(\theta - \mu))^{1/\zeta}
    $$

    , where $\Gamma$ is the gamma function.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    zeta : float
        Shape parameter, zeta > 0.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """

    return super().pdf(x, mu, zeta, *args, **kwargs)

cdf(x, mu, zeta, *args, **kwargs)

Cumulative distribution function of the Cartwright distribution.

No closed-form solution is available, so the CDF is computed numerically.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
zeta float

Shape parameter, zeta > 0.

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
def cdf(self, x, mu, zeta, *args, **kwargs):
    r"""
    Cumulative distribution function of the Cartwright distribution.

    No closed-form solution is available, so the CDF is computed numerically.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    zeta : float
        Shape parameter, zeta > 0.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, zeta, *args, **kwargs)

wrapnorm_gen

Bases: rv_continuous

Wrapped Normal Distribution

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Examples:

from pycircstat2.distributions import wrapnorm
Notes

Implementation based on Section 4.3.7 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
class wrapnorm_gen(rv_continuous):
    """Wrapped Normal Distribution

    Methods
    -------
    pdf(x, mu, rho)
        Probability density function.

    cdf(x, mu, rho)
        Cumulative distribution function.

    Examples
    --------
    ```
    from pycircstat2.distributions import wrapnorm
    ```

    Notes
    -----
    Implementation based on Section 4.3.7 of Pewsey et al. (2014)
    """

    def _argcheck(self, mu, rho):
        return 0 <= mu <= np.pi * 2 and 0 < rho <= 1

    def _pdf(self, x, mu, rho):
        return (
            1
            + 2
            * np.sum([rho ** (p**2) * np.cos(p * (x - mu)) for p in range(1, 30)], 0)
        ) / (2 * np.pi)

    def pdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Probability density function of the Wrapped Normal distribution.

        $$
        f(\theta) = \frac{1}{2\pi} \left(1 + 2\sum_{p=1}^{\infty} \rho^{p^2} \cos(p(\theta - \mu))\right)
        $$

        , here we approximate the infinite sum by summing the first 30 terms.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho <= 1.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, rho, *args, **kwargs)

    def _cdf(self, x, mu, rho):
        @np.vectorize
        def _cdf_single(x, mu, rho):
            return quad(self._pdf, a=0, b=x, args=(mu, rho))

        return _cdf_single(x, mu, rho)

    def cdf(self, x, mu, rho, *args, **kwargs):
        """
        Cumulative distribution function of the Wrapped Normal distribution.

        No closed-form solution is available, so the CDF is computed numerically.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho <= 1.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, rho, *args, **kwargs)

pdf(x, mu, rho, *args, **kwargs)

Probability density function of the Wrapped Normal distribution.

\[ f(\theta) = \frac{1}{2\pi} \left(1 + 2\sum_{p=1}^{\infty} \rho^{p^2} \cos(p(\theta - \mu))\right) \]

, here we approximate the infinite sum by summing the first 30 terms.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho <= 1.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
def pdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Probability density function of the Wrapped Normal distribution.

    $$
    f(\theta) = \frac{1}{2\pi} \left(1 + 2\sum_{p=1}^{\infty} \rho^{p^2} \cos(p(\theta - \mu))\right)
    $$

    , here we approximate the infinite sum by summing the first 30 terms.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho <= 1.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, rho, *args, **kwargs)

cdf(x, mu, rho, *args, **kwargs)

Cumulative distribution function of the Wrapped Normal distribution.

No closed-form solution is available, so the CDF is computed numerically.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho <= 1.

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def cdf(self, x, mu, rho, *args, **kwargs):
    """
    Cumulative distribution function of the Wrapped Normal distribution.

    No closed-form solution is available, so the CDF is computed numerically.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho <= 1.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, rho, *args, **kwargs)

wrapcauchy_gen

Bases: rv_continuous

Wrapped Cauchy Distribution.

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

rvs

Random variates.

fit

Fit the distribution to the data and return the parameters (mu, rho).

Notes

Implementation based on Section 4.3.6 of Pewsey et al. (2014).

Source code in pycircstat2/distributions.py
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
class wrapcauchy_gen(rv_continuous):
    """Wrapped Cauchy Distribution.

    Methods
    -------
    pdf(x, mu, rho)
        Probability density function.

    cdf(x, mu, rho)
        Cumulative distribution function.

    rvs(mu, rho, size=None, random_state=None)
        Random variates.

    fit(data, method="analytical", *args, **kwargs)
        Fit the distribution to the data and return the parameters (mu, rho).

    Notes
    -----
    Implementation based on Section 4.3.6 of Pewsey et al. (2014).
    """

    def _argcheck(self, mu, rho):
        return 0 <= mu <= np.pi * 2 and 0 < rho <= 1

    def _pdf(self, x, mu, rho):
        return (1 - rho**2) / (2 * np.pi * (1 + rho**2 - 2 * rho * np.cos(x - mu)))

    def pdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Probability density function of the Wrapped Cauchy distribution.

        $$
        f(\theta) = \frac{1 - \rho^2}{2\pi(1 + \rho^2 - 2\rho \cos(\theta - \mu))}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho <= 1.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, rho, *args, **kwargs)

    def _logpdf(self, x, mu, rho):
        return np.log(np.clip(self._pdf(x, mu, rho), 1e-16, None))

    def logpdf(self, x, mu, rho, *args, **kwargs):
        """
        Logarithm of the probability density function.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the log-PDF.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Mean resultant length, 0 < rho <= 1.

        Returns
        -------
        logpdf_values : array_like
            Logarithm of the probability density function evaluated at `x`.
        """
        return super().logpdf(x, mu, rho, *args, **kwargs)

    def _cdf(self, x, mu, rho):
        @np.vectorize
        def _cdf_single(x, mu, rho):
            integral, _ = quad(self._pdf, a=0, b=x, args=(mu, rho))
            return integral

        return _cdf_single(x, mu, rho)

    def cdf(self, x, mu, rho, *args, **kwargs):
        """
        Cumulative distribution function of the Wrapped Cauchy distribution.

        No closed-form solution is available, so the CDF is computed numerically.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the CDF.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho <= 1.

        Returns
        -------
        cdf_values : array_like
            CDF evaluated at `x`.
        """
        return super().cdf(x, mu, rho, *args, **kwargs)

    def _rvs(self, mu, rho, size=None, random_state=None):
        """
        Random variate generation for the Wrapped Cauchy distribution.

        Parameters
        ----------

        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Mean resultant length, 0 <= rho <= 1.
        size : int or tuple, optional
            Number of samples to generate.
        random_state : RandomState, optional
            Random number generator instance.

        Returns
        -------
        samples : ndarray
            Random variates from the Wrapped Cauchy distribution.
        """
        rng = self._random_state if random_state is None else random_state

        if rho == 0:
            return rng.uniform(0, 2 * np.pi, size=size)
        elif rho == 1:
            return np.full(size, mu % (2 * np.pi))
        else:
            from scipy.stats import cauchy

            scale = -np.log(rho)
            samples = cauchy.rvs(loc=mu, scale=scale, size=size, random_state=rng)
            return np.mod(samples, 2 * np.pi)

    def fit(self, data, method="analytical", *args, **kwargs):
        """
        Fit the Wrapped Cauchy distribution to the data.

        Parameters
        ----------
        data : array_like
            Input data (angles in radians).
        method : str, optional
            The approach for fitting the distribution. Options are:
            - "analytical": Compute `rho` and `mu` using closed-form solutions.
            - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer.
            Default is "analytical".

        *args, **kwargs :
            Additional arguments passed to the optimizer (if used).

        Returns
        -------
        rho : float
            Estimated shape parameter.
        mu : float
            Estimated mean direction.
        """

        # Validate the fitting method
        valid_methods = ["analytical", "numerical"]
        if method not in valid_methods:
            raise ValueError(
                f"Invalid method '{method}'. Available methods are {valid_methods}."
            )

        # Validate the data
        if not np.all((0 <= data) & (data < 2 * np.pi)):
            raise ValueError("Data must be in the range [0, 2π).")

        # Analytical solution for the Von Mises distribution
        mu, rho = circ_mean_and_r(alpha=data)

        # Use analytical estimates for mu and rho
        if method == "analytical":
            return mu, rho
        elif method == "numerical":
            # Numerical optimization
            def nll(params):
                mu, rho = params
                if not self._argcheck(mu, rho):
                    return np.inf
                return -np.sum(self._logpdf(data, mu, rho))

            start_params = [mu, np.clip(rho, 1e-4, 1 - 1e-4)]
            bounds = [(0, 2 * np.pi), (1e-6, 1)]
            algo = kwargs.pop("algorithm", "L-BFGS-B")
            result = minimize(
                nll, start_params, bounds=bounds, method=algo, *args, **kwargs
            )
            if not result.success:
                raise RuntimeError(f"Optimization failed: {result.message}")
            mu, rho = result.x
            return mu, rho
        else:
            raise ValueError(
                "Invalid method. Supported methods are 'analytical' and " "'numerical'."
            )

pdf(x, mu, rho, *args, **kwargs)

Probability density function of the Wrapped Cauchy distribution.

\[ f(\theta) = \frac{1 - \rho^2}{2\pi(1 + \rho^2 - 2\rho \cos(\theta - \mu))} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho <= 1.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
def pdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Probability density function of the Wrapped Cauchy distribution.

    $$
    f(\theta) = \frac{1 - \rho^2}{2\pi(1 + \rho^2 - 2\rho \cos(\theta - \mu))}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho <= 1.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, rho, *args, **kwargs)

logpdf(x, mu, rho, *args, **kwargs)

Logarithm of the probability density function.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the log-PDF.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Mean resultant length, 0 < rho <= 1.

required

Returns:

Name Type Description
logpdf_values array_like

Logarithm of the probability density function evaluated at x.

Source code in pycircstat2/distributions.py
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
def logpdf(self, x, mu, rho, *args, **kwargs):
    """
    Logarithm of the probability density function.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the log-PDF.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Mean resultant length, 0 < rho <= 1.

    Returns
    -------
    logpdf_values : array_like
        Logarithm of the probability density function evaluated at `x`.
    """
    return super().logpdf(x, mu, rho, *args, **kwargs)

cdf(x, mu, rho, *args, **kwargs)

Cumulative distribution function of the Wrapped Cauchy distribution.

No closed-form solution is available, so the CDF is computed numerically.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the CDF.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho <= 1.

required

Returns:

Name Type Description
cdf_values array_like

CDF evaluated at x.

Source code in pycircstat2/distributions.py
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def cdf(self, x, mu, rho, *args, **kwargs):
    """
    Cumulative distribution function of the Wrapped Cauchy distribution.

    No closed-form solution is available, so the CDF is computed numerically.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the CDF.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho <= 1.

    Returns
    -------
    cdf_values : array_like
        CDF evaluated at `x`.
    """
    return super().cdf(x, mu, rho, *args, **kwargs)

fit(data, method='analytical', *args, **kwargs)

Fit the Wrapped Cauchy distribution to the data.

Parameters:

Name Type Description Default
data array_like

Input data (angles in radians).

required
method str

The approach for fitting the distribution. Options are: - "analytical": Compute rho and mu using closed-form solutions. - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer. Default is "analytical".

'analytical'
*args

Additional arguments passed to the optimizer (if used).

()
**kwargs

Additional arguments passed to the optimizer (if used).

()

Returns:

Name Type Description
rho float

Estimated shape parameter.

mu float

Estimated mean direction.

Source code in pycircstat2/distributions.py
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
def fit(self, data, method="analytical", *args, **kwargs):
    """
    Fit the Wrapped Cauchy distribution to the data.

    Parameters
    ----------
    data : array_like
        Input data (angles in radians).
    method : str, optional
        The approach for fitting the distribution. Options are:
        - "analytical": Compute `rho` and `mu` using closed-form solutions.
        - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer.
        Default is "analytical".

    *args, **kwargs :
        Additional arguments passed to the optimizer (if used).

    Returns
    -------
    rho : float
        Estimated shape parameter.
    mu : float
        Estimated mean direction.
    """

    # Validate the fitting method
    valid_methods = ["analytical", "numerical"]
    if method not in valid_methods:
        raise ValueError(
            f"Invalid method '{method}'. Available methods are {valid_methods}."
        )

    # Validate the data
    if not np.all((0 <= data) & (data < 2 * np.pi)):
        raise ValueError("Data must be in the range [0, 2π).")

    # Analytical solution for the Von Mises distribution
    mu, rho = circ_mean_and_r(alpha=data)

    # Use analytical estimates for mu and rho
    if method == "analytical":
        return mu, rho
    elif method == "numerical":
        # Numerical optimization
        def nll(params):
            mu, rho = params
            if not self._argcheck(mu, rho):
                return np.inf
            return -np.sum(self._logpdf(data, mu, rho))

        start_params = [mu, np.clip(rho, 1e-4, 1 - 1e-4)]
        bounds = [(0, 2 * np.pi), (1e-6, 1)]
        algo = kwargs.pop("algorithm", "L-BFGS-B")
        result = minimize(
            nll, start_params, bounds=bounds, method=algo, *args, **kwargs
        )
        if not result.success:
            raise RuntimeError(f"Optimization failed: {result.message}")
        mu, rho = result.x
        return mu, rho
    else:
        raise ValueError(
            "Invalid method. Supported methods are 'analytical' and " "'numerical'."
        )

vonmises_gen

Bases: rv_continuous

Von Mises Distribution

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

ppf

Percent-point function (inverse of CDF).

rvs

Random variates.

fit

Fit the distribution to the data and return the parameters (mu, kappa).

Examples:

from pycircstat2.distributions import vonmises
References
  • Section 4.3.8 of Pewsey et al. (2014)
Source code in pycircstat2/distributions.py
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
class vonmises_gen(rv_continuous):
    """Von Mises Distribution

    Methods
    -------
    pdf(x, mu, kappa)
        Probability density function.

    cdf(x, mu, kappa)
        Cumulative distribution function.

    ppf(q, mu, kappa)
        Percent-point function (inverse of CDF).

    rvs(mu, kappa, size=None, random_state=None)
        Random variates.

    fit(data, *args, **kwargs)
        Fit the distribution to the data and return the parameters (mu, kappa).

    Examples
    --------
    ```
    from pycircstat2.distributions import vonmises
    ```

    References
    ----------
    - Section 4.3.8 of Pewsey et al. (2014)

    """

    _freeze_doc = """
    Freeze the distribution with specific parameters.

    Parameters
    ----------
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    rv_frozen : rv_frozen instance
        The frozen distribution instance with fixed parameters.
    """

    def __call__(self, *args, **kwds):
        return self.freeze(*args, **kwds)

    __call__.__doc__ = _freeze_doc

    def _argcheck(self, mu, kappa):
        return 0 <= mu <= np.pi * 2 and kappa > 0

    def _pdf(self, x, mu, kappa):
        return np.exp(kappa * np.cos(x - mu)) / (2 * np.pi * i0(kappa))

    def pdf(self, x, mu, kappa, *args, **kwargs):
        r"""
        Probability density function of the Von Mises distribution.

        $$
        f(\theta) = \frac{e^{\kappa \cos(\theta - \mu)}}{2\pi I_0(\kappa)}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            The mean direction of the distribution (0 <= mu <= 2*pi).
        kappa : float
            The concentration parameter of the distribution (kappa > 0).

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, kappa, *args, **kwargs)

    def _logpdf(self, x, mu, kappa):
        return kappa * np.cos(x - mu) - np.log(2 * np.pi * i0(kappa))

    def logpdf(self, x, mu, kappa, *args, **kwargs):
        """
        Logarithm of the probability density function of the Von Mises
        distribution.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the logarithm of the probability density function.
        mu : float
            The mean direction of the distribution (0 <= mu <= 2*pi).
        kappa : float
            The concentration parameter of the distribution (kappa > 0).

        Returns
        -------
        logpdf_values : array_like
            Logarithm of the probability density function evaluated at `x`.
        """
        return super().logpdf(x, mu, kappa, *args, **kwargs)

    def _cdf(self, x, mu, kappa):
        @np.vectorize
        def _cdf_single(x, mu, kappa):
            integral, _ = quad(self._pdf, a=0, b=x, args=(mu, kappa))
            return integral

        return _cdf_single(x, mu, kappa)

    def cdf(self, x, mu, kappa, *args, **kwargs):
        r"""
        Cumulative distribution function of the Von Mises distribution.

        $$
        F(\theta) = \frac{1}{2 \pi I_0(\kappa)}\int_{0}^{\theta} e^{\kappa \cos(\theta - \mu)} dx
        $$

        No closed-form solution is available, so the CDF is computed numerically.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            The mean direction of the distribution (0 <= mu <= 2*pi).
        kappa : float
            The concentration parameter of the distribution (kappa > 0).

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, kappa, *args, **kwargs)

    def ppf(self, q, mu, kappa, *args, **kwargs):
        """
        Percent-point function (inverse of the CDF) of the Von Mises distribution.

        Parameters
        ----------
        q : array_like
            Quantiles to evaluate.
        mu : float
            The mean direction of the distribution (0 <= mu <= 2*pi).
        kappa : float
            The concentration parameter of the distribution (kappa > 0).

        Returns
        -------
        ppf_values : array_like
            Values at the given quantiles.
        """
        return super().ppf(q, mu, kappa, *args, **kwargs)

    def _rvs(self, mu, kappa, size=None, random_state=None):
        # Use the random_state attribute or a new default random generator
        rng = self._random_state if random_state is None else random_state

        # Handle size being a tuple
        if size is None:
            size = 1
        num_samples = np.prod(size)  # Total number of samples

        # Best-Fisher algorithm
        a = 1 + np.sqrt(1 + 4 * kappa**2)
        b = (a - np.sqrt(2 * a)) / (2 * kappa)
        r = (1 + b**2) / (2 * b)

        def sample():
            while True:
                u1 = rng.uniform()
                z = np.cos(np.pi * u1)
                f = (1 + r * z) / (r + z)
                c = kappa * (r - f)
                u2 = rng.uniform()
                if u2 < c * (2 - c) or u2 <= c * np.exp(1 - c):
                    break
            u3 = rng.uniform()
            theta = mu + np.sign(u3 - 0.5) * np.arccos(f)
            return theta % (2 * np.pi)

        samples = np.array([sample() for _ in range(num_samples)])
        return samples

    def rvs(self, size=None, random_state=None, *args, **kwargs):
        """
        Draw random variates.

        Parameters
        ----------
        size : int or tuple, optional
            Number of samples to generate.
        random_state : RandomState, optional
            Random number generator instance.

        Returns
        -------
        samples : ndarray
            Random variates.
        """
        # Check if instance-level parameters are set
        mu = getattr(self, "mu", None)
        kappa = getattr(self, "kappa", None)

        # Override instance parameters if provided in args/kwargs
        mu = kwargs.pop("mu", mu)
        kappa = kwargs.pop("kappa", kappa)

        # Ensure required parameters are provided
        if mu is None or kappa is None:
            raise ValueError("Both 'mu' and 'kappa' must be provided.")

        # Call the private _rvs method
        return self._rvs(mu, kappa, size=size, random_state=random_state)

    def support(self, *args, **kwargs):
        return (0, 2 * np.pi)

    def mean(self, *args, **kwargs):
        """
        Circular mean of the Von Mises distribution.

        Returns
        -------
        mean : float
            The circular mean direction (in radians), equal to `mu`.
        """
        (mu, _) = self._parse_args(*args, **kwargs)[0]
        return mu

    def median(self, *args, **kwargs):
        """
        Circular median of the Von Mises distribution.

        Returns
        -------
        median : float
            The circular median direction (in radians), equal to `mu`.
        """
        return self.mean(*args, **kwargs)

    def var(self, *args, **kwargs):
        """
        Circular variance of the Von Mises distribution.

        Returns
        -------
        variance : float
            The circular variance, derived from `kappa`.
        """
        (_, kappa) = self._parse_args(*args, **kwargs)[0]
        return 1 - i1(kappa) / i0(kappa)

    def std(self, *args, **kwargs):
        """
        Circular standard deviation of the Von Mises distribution.

        Returns
        -------
        std : float
            The circular standard deviation, derived from `kappa`.
        """
        (_, kappa) = self._parse_args(*args, **kwargs)[0]
        r = i1(kappa) / i0(kappa)

        return np.sqrt(-2 * np.log(r))

    def entropy(self, *args, **kwargs):
        """
        Entropy of the Von Mises distribution.

        Returns
        -------
        entropy : float
            The entropy of the distribution.
        """
        (_, kappa) = self._parse_args(*args, **kwargs)[0]
        return -np.log(i0(kappa)) + (kappa * i1(kappa)) / i0(kappa)

    def _nnlf(self, theta, data):
        """
        Custom negative log-likelihood function for the Von Mises distribution.
        """
        mu, kappa = theta

        if not self._argcheck(mu, kappa):  # Validate parameter range
            return np.inf

        # Compute log-likelihood robustly
        log_likelihood = self._logpdf(data, mu, kappa)

        # Negative log-likelihood
        return -np.sum(log_likelihood)

    def fit(self, data, method="analytical", *args, **kwargs):
        """
        Fit the Von Mises distribution to the given data.

        Parameters
        ----------
        data : array_like
            The data to fit the distribution to. Assumes values are in radians.
        method : str, optional
            The approach for fitting the distribution. Options are:
            - "analytical": Compute `mu` and `kappa` using closed-form solutions.
            - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer.
            Default is "analytical".

            When `method="numerical"`, the optimization algorithm can be specified via `algorithm` in `kwargs`.
            Supported algorithms include any method from `scipy.optimize.minimize`, such as "L-BFGS-B" (default) or "Nelder-Mead".

        *args : tuple, optional
            Additional positional arguments passed to the optimizer (if used).
        **kwargs : dict, optional
            Additional keyword arguments passed to the optimizer (if used).

        Returns
        -------
        kappa : float
            The estimated concentration parameter of the Von Mises distribution.
        mu : float
            The estimated mean direction of the Von Mises distribution.

        Notes
        -----
        - The "analytical" method directly computes the parameters using the circular mean
        and resultant vector length (`r`) for `mu` and `kappa`, respectively.
        - For numerical methods, the negative log-likelihood (NLL) is minimized using `_nnlf` as the objective function.


        Examples
        --------
        ```python
        # MLE fitting using analytical solution
        mu, kappa = vonmises.fit(data, method="analytical")

        # MLE fitting with numerical method using L-BFGS-B
        mu, kappa = vonmises.fit(data, method="L-BFGS-B")
        ```
        """

        # Validate the fitting method
        valid_methods = ["analytical", "numerical"]
        if method not in valid_methods:
            raise ValueError(
                f"Invalid method '{method}'. Available methods are {valid_methods}."
            )

        # Validate the data
        if not np.all((0 <= data) & (data < 2 * np.pi)):
            raise ValueError("Data must be in the range [0, 2π).")

        # Analytical solution for the Von Mises distribution
        mu, r = circ_mean_and_r(alpha=data)
        kappa = circ_kappa(r=r, n=len(data))

        if method == "analytical":
            if np.isclose(r, 0):
                raise ValueError(
                    "Resultant vector length (r) is zero, e.g. uniform data or low directional bias."
                )
            return mu, kappa
        elif method == "numerical":
            # Use analytical solution as initial guess
            start_params = [mu, kappa]
            bounds = [(0, 2 * np.pi), (0, None)]  # 0 <= mu < 2*pi, kappa > 0,

            algo = kwargs.pop("algorithm", "L-BFGS-B")

            # Define the objective function (NLL) using `_nnlf`
            def nll(params):
                return self._nnlf(params, data)

            # Use the optimizer to minimize NLL
            result = minimize(
                nll, start_params, bounds=bounds, method=algo, *args, **kwargs
            )

            # Extract parameters from optimization result
            if not result.success:
                raise RuntimeError(f"Optimization failed: {result.message}")

            mu, kappa = result.x
            return mu, kappa
        else:
            raise ValueError(
                f"Invalid method '{method}'. Supported methods are 'analytical' and 'numerical'."
            )

pdf(x, mu, kappa, *args, **kwargs)

Probability density function of the Von Mises distribution.

\[ f(\theta) = \frac{e^{\kappa \cos(\theta - \mu)}}{2\pi I_0(\kappa)} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

The mean direction of the distribution (0 <= mu <= 2*pi).

required
kappa float

The concentration parameter of the distribution (kappa > 0).

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
def pdf(self, x, mu, kappa, *args, **kwargs):
    r"""
    Probability density function of the Von Mises distribution.

    $$
    f(\theta) = \frac{e^{\kappa \cos(\theta - \mu)}}{2\pi I_0(\kappa)}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, kappa, *args, **kwargs)

logpdf(x, mu, kappa, *args, **kwargs)

Logarithm of the probability density function of the Von Mises distribution.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the logarithm of the probability density function.

required
mu float

The mean direction of the distribution (0 <= mu <= 2*pi).

required
kappa float

The concentration parameter of the distribution (kappa > 0).

required

Returns:

Name Type Description
logpdf_values array_like

Logarithm of the probability density function evaluated at x.

Source code in pycircstat2/distributions.py
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
def logpdf(self, x, mu, kappa, *args, **kwargs):
    """
    Logarithm of the probability density function of the Von Mises
    distribution.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the logarithm of the probability density function.
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    logpdf_values : array_like
        Logarithm of the probability density function evaluated at `x`.
    """
    return super().logpdf(x, mu, kappa, *args, **kwargs)

cdf(x, mu, kappa, *args, **kwargs)

Cumulative distribution function of the Von Mises distribution.

\[ F(\theta) = \frac{1}{2 \pi I_0(\kappa)}\int_{0}^{\theta} e^{\kappa \cos(\theta - \mu)} dx \]

No closed-form solution is available, so the CDF is computed numerically.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

The mean direction of the distribution (0 <= mu <= 2*pi).

required
kappa float

The concentration parameter of the distribution (kappa > 0).

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
def cdf(self, x, mu, kappa, *args, **kwargs):
    r"""
    Cumulative distribution function of the Von Mises distribution.

    $$
    F(\theta) = \frac{1}{2 \pi I_0(\kappa)}\int_{0}^{\theta} e^{\kappa \cos(\theta - \mu)} dx
    $$

    No closed-form solution is available, so the CDF is computed numerically.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, kappa, *args, **kwargs)

ppf(q, mu, kappa, *args, **kwargs)

Percent-point function (inverse of the CDF) of the Von Mises distribution.

Parameters:

Name Type Description Default
q array_like

Quantiles to evaluate.

required
mu float

The mean direction of the distribution (0 <= mu <= 2*pi).

required
kappa float

The concentration parameter of the distribution (kappa > 0).

required

Returns:

Name Type Description
ppf_values array_like

Values at the given quantiles.

Source code in pycircstat2/distributions.py
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
def ppf(self, q, mu, kappa, *args, **kwargs):
    """
    Percent-point function (inverse of the CDF) of the Von Mises distribution.

    Parameters
    ----------
    q : array_like
        Quantiles to evaluate.
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    ppf_values : array_like
        Values at the given quantiles.
    """
    return super().ppf(q, mu, kappa, *args, **kwargs)

rvs(size=None, random_state=None, *args, **kwargs)

Draw random variates.

Parameters:

Name Type Description Default
size int or tuple

Number of samples to generate.

None
random_state RandomState

Random number generator instance.

None

Returns:

Name Type Description
samples ndarray

Random variates.

Source code in pycircstat2/distributions.py
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
def rvs(self, size=None, random_state=None, *args, **kwargs):
    """
    Draw random variates.

    Parameters
    ----------
    size : int or tuple, optional
        Number of samples to generate.
    random_state : RandomState, optional
        Random number generator instance.

    Returns
    -------
    samples : ndarray
        Random variates.
    """
    # Check if instance-level parameters are set
    mu = getattr(self, "mu", None)
    kappa = getattr(self, "kappa", None)

    # Override instance parameters if provided in args/kwargs
    mu = kwargs.pop("mu", mu)
    kappa = kwargs.pop("kappa", kappa)

    # Ensure required parameters are provided
    if mu is None or kappa is None:
        raise ValueError("Both 'mu' and 'kappa' must be provided.")

    # Call the private _rvs method
    return self._rvs(mu, kappa, size=size, random_state=random_state)

mean(*args, **kwargs)

Circular mean of the Von Mises distribution.

Returns:

Name Type Description
mean float

The circular mean direction (in radians), equal to mu.

Source code in pycircstat2/distributions.py
818
819
820
821
822
823
824
825
826
827
828
def mean(self, *args, **kwargs):
    """
    Circular mean of the Von Mises distribution.

    Returns
    -------
    mean : float
        The circular mean direction (in radians), equal to `mu`.
    """
    (mu, _) = self._parse_args(*args, **kwargs)[0]
    return mu

median(*args, **kwargs)

Circular median of the Von Mises distribution.

Returns:

Name Type Description
median float

The circular median direction (in radians), equal to mu.

Source code in pycircstat2/distributions.py
830
831
832
833
834
835
836
837
838
839
def median(self, *args, **kwargs):
    """
    Circular median of the Von Mises distribution.

    Returns
    -------
    median : float
        The circular median direction (in radians), equal to `mu`.
    """
    return self.mean(*args, **kwargs)

var(*args, **kwargs)

Circular variance of the Von Mises distribution.

Returns:

Name Type Description
variance float

The circular variance, derived from kappa.

Source code in pycircstat2/distributions.py
841
842
843
844
845
846
847
848
849
850
851
def var(self, *args, **kwargs):
    """
    Circular variance of the Von Mises distribution.

    Returns
    -------
    variance : float
        The circular variance, derived from `kappa`.
    """
    (_, kappa) = self._parse_args(*args, **kwargs)[0]
    return 1 - i1(kappa) / i0(kappa)

std(*args, **kwargs)

Circular standard deviation of the Von Mises distribution.

Returns:

Name Type Description
std float

The circular standard deviation, derived from kappa.

Source code in pycircstat2/distributions.py
853
854
855
856
857
858
859
860
861
862
863
864
865
def std(self, *args, **kwargs):
    """
    Circular standard deviation of the Von Mises distribution.

    Returns
    -------
    std : float
        The circular standard deviation, derived from `kappa`.
    """
    (_, kappa) = self._parse_args(*args, **kwargs)[0]
    r = i1(kappa) / i0(kappa)

    return np.sqrt(-2 * np.log(r))

entropy(*args, **kwargs)

Entropy of the Von Mises distribution.

Returns:

Name Type Description
entropy float

The entropy of the distribution.

Source code in pycircstat2/distributions.py
867
868
869
870
871
872
873
874
875
876
877
def entropy(self, *args, **kwargs):
    """
    Entropy of the Von Mises distribution.

    Returns
    -------
    entropy : float
        The entropy of the distribution.
    """
    (_, kappa) = self._parse_args(*args, **kwargs)[0]
    return -np.log(i0(kappa)) + (kappa * i1(kappa)) / i0(kappa)

fit(data, method='analytical', *args, **kwargs)

Fit the Von Mises distribution to the given data.

Parameters:

Name Type Description Default
data array_like

The data to fit the distribution to. Assumes values are in radians.

required
method str

The approach for fitting the distribution. Options are: - "analytical": Compute mu and kappa using closed-form solutions. - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer. Default is "analytical".

When method="numerical", the optimization algorithm can be specified via algorithm in kwargs. Supported algorithms include any method from scipy.optimize.minimize, such as "L-BFGS-B" (default) or "Nelder-Mead".

'analytical'
*args tuple

Additional positional arguments passed to the optimizer (if used).

()
**kwargs dict

Additional keyword arguments passed to the optimizer (if used).

{}

Returns:

Name Type Description
kappa float

The estimated concentration parameter of the Von Mises distribution.

mu float

The estimated mean direction of the Von Mises distribution.

Notes
  • The "analytical" method directly computes the parameters using the circular mean and resultant vector length (r) for mu and kappa, respectively.
  • For numerical methods, the negative log-likelihood (NLL) is minimized using _nnlf as the objective function.

Examples:

# MLE fitting using analytical solution
mu, kappa = vonmises.fit(data, method="analytical")

# MLE fitting with numerical method using L-BFGS-B
mu, kappa = vonmises.fit(data, method="L-BFGS-B")
Source code in pycircstat2/distributions.py
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
def fit(self, data, method="analytical", *args, **kwargs):
    """
    Fit the Von Mises distribution to the given data.

    Parameters
    ----------
    data : array_like
        The data to fit the distribution to. Assumes values are in radians.
    method : str, optional
        The approach for fitting the distribution. Options are:
        - "analytical": Compute `mu` and `kappa` using closed-form solutions.
        - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer.
        Default is "analytical".

        When `method="numerical"`, the optimization algorithm can be specified via `algorithm` in `kwargs`.
        Supported algorithms include any method from `scipy.optimize.minimize`, such as "L-BFGS-B" (default) or "Nelder-Mead".

    *args : tuple, optional
        Additional positional arguments passed to the optimizer (if used).
    **kwargs : dict, optional
        Additional keyword arguments passed to the optimizer (if used).

    Returns
    -------
    kappa : float
        The estimated concentration parameter of the Von Mises distribution.
    mu : float
        The estimated mean direction of the Von Mises distribution.

    Notes
    -----
    - The "analytical" method directly computes the parameters using the circular mean
    and resultant vector length (`r`) for `mu` and `kappa`, respectively.
    - For numerical methods, the negative log-likelihood (NLL) is minimized using `_nnlf` as the objective function.


    Examples
    --------
    ```python
    # MLE fitting using analytical solution
    mu, kappa = vonmises.fit(data, method="analytical")

    # MLE fitting with numerical method using L-BFGS-B
    mu, kappa = vonmises.fit(data, method="L-BFGS-B")
    ```
    """

    # Validate the fitting method
    valid_methods = ["analytical", "numerical"]
    if method not in valid_methods:
        raise ValueError(
            f"Invalid method '{method}'. Available methods are {valid_methods}."
        )

    # Validate the data
    if not np.all((0 <= data) & (data < 2 * np.pi)):
        raise ValueError("Data must be in the range [0, 2π).")

    # Analytical solution for the Von Mises distribution
    mu, r = circ_mean_and_r(alpha=data)
    kappa = circ_kappa(r=r, n=len(data))

    if method == "analytical":
        if np.isclose(r, 0):
            raise ValueError(
                "Resultant vector length (r) is zero, e.g. uniform data or low directional bias."
            )
        return mu, kappa
    elif method == "numerical":
        # Use analytical solution as initial guess
        start_params = [mu, kappa]
        bounds = [(0, 2 * np.pi), (0, None)]  # 0 <= mu < 2*pi, kappa > 0,

        algo = kwargs.pop("algorithm", "L-BFGS-B")

        # Define the objective function (NLL) using `_nnlf`
        def nll(params):
            return self._nnlf(params, data)

        # Use the optimizer to minimize NLL
        result = minimize(
            nll, start_params, bounds=bounds, method=algo, *args, **kwargs
        )

        # Extract parameters from optimization result
        if not result.success:
            raise RuntimeError(f"Optimization failed: {result.message}")

        mu, kappa = result.x
        return mu, kappa
    else:
        raise ValueError(
            f"Invalid method '{method}'. Supported methods are 'analytical' and 'numerical'."
        )

jonespewsey_gen

Bases: rv_continuous

Jones-Pewsey Distribution

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Implementation based on Section 4.3.9 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
class jonespewsey_gen(rv_continuous):
    """Jones-Pewsey Distribution

    Methods
    -------
    pdf(x, mu, kappa, psi)
        Probability density function.

    cdf(x, mu, kappa, psi)
        Cumulative distribution function.


    Note
    ----
    Implementation based on Section 4.3.9 of Pewsey et al. (2014)
    """

    def _validate_params(self, mu, kappa, psi):
        return (0 <= mu <= np.pi * 2) and (kappa >= 0) and (-np.inf <= psi <= np.inf)

    def _argcheck(self, mu, kappa, psi):
        if self._validate_params(mu, kappa, psi):
            self._c = _c_jonespewsey(
                mu, kappa, psi
            )  # Precompute the normalizing constant
            return True
        else:
            return False

    def _pdf(self, x, mu, kappa, psi):

        if np.all(kappa < 0.001):
            return 1 / (2 * np.pi)
        else:
            if np.isclose(np.abs(psi), 0).all():
                return 1 / (2 * np.pi * i0(kappa)) * np.exp(kappa * np.cos(x - mu))
            else:
                return _kernel_jonespewsey(x, mu, kappa, psi) / self._c

    def pdf(self, x, mu, kappa, psi, *args, **kwargs):
        r"""
        Probability density function of the Jones-Pewsey distribution.

        $$
        f(\theta) = \frac{(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \mu))^{1/\psi}}{2\pi \cosh(\kappa \pi)}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        kappa : float
            Concentration parameter, kappa >= 0.
        psi : float
            Skewness parameter, -∞ <= psi <= ∞.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, kappa, psi, *args, **kwargs)

    def _cdf(self, x, mu, kappa, psi):
        def vonmises_pdf(x, mu, kappa, psi, c):
            return c * np.exp(kappa * np.cos(x - mu))

        if np.isclose(np.abs(psi), 0).all():
            c = self._c

            @np.vectorize
            def _cdf_single(x, mu, kappa, psi, c):
                return quad(vonmises_pdf, a=0, b=x, args=(mu, kappa, psi, c))

            return _cdf_single(x, mu, kappa, psi, c)
        else:

            @np.vectorize
            def _cdf_single(x, mu, kappa, psi):
                return quad(self._pdf, a=0, b=x, args=(mu, kappa, psi))

            return _cdf_single(x, mu, kappa, psi)

pdf(x, mu, kappa, psi, *args, **kwargs)

Probability density function of the Jones-Pewsey distribution.

\[ f(\theta) = \frac{(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \mu))^{1/\psi}}{2\pi \cosh(\kappa \pi)} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
kappa float

Concentration parameter, kappa >= 0.

required
psi float

Skewness parameter, -∞ <= psi <= ∞.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
def pdf(self, x, mu, kappa, psi, *args, **kwargs):
    r"""
    Probability density function of the Jones-Pewsey distribution.

    $$
    f(\theta) = \frac{(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \mu))^{1/\psi}}{2\pi \cosh(\kappa \pi)}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    kappa : float
        Concentration parameter, kappa >= 0.
    psi : float
        Skewness parameter, -∞ <= psi <= ∞.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, kappa, psi, *args, **kwargs)

vonmises_ext_gen

Bases: rv_continuous

Flat-topped von Mises Distribution

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Implementation based on Section 4.3.10 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
class vonmises_ext_gen(rv_continuous):
    """Flat-topped von Mises Distribution

    Methods
    -------
    pdf(x, mu, kappa, nu)
        Probability density function.

    cdf(x, mu, kappa, nu)
        Cumulative distribution function.

    Note
    ----
    Implementation based on Section 4.3.10 of Pewsey et al. (2014)
    """

    def _validate_params(self, mu, kappa, nu):
        return (0 <= mu <= np.pi * 2) and (kappa >= 0) and (-1 <= nu <= 1)

    def _argcheck(self, mu, kappa, nu):
        if self._validate_params(mu, kappa, nu):
            self._c = _c_vmext(mu, kappa, nu)
            return True
        else:
            return False

    def _pdf(self, x, mu, kappa, nu):
        return self._c * _kernel_vmext(x, mu, kappa, nu)

    def _cdf(self, x, mu, kappa, nu):
        @np.vectorize
        def _cdf_single(x, mu, kappa, nu):
            return quad(self._pdf, a=0, b=x, args=(mu, kappa, nu))

        return _cdf_single(x, mu, kappa, nu)

jonespewsey_sineskewed_gen

Bases: rv_continuous

Sine-Skewed Jones-Pewsey Distribution

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Implementation based on Section 4.3.11 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
class jonespewsey_sineskewed_gen(rv_continuous):
    """Sine-Skewed Jones-Pewsey Distribution

    Methods
    -------
    pdf(x, xi, kappa, psi, lmbd)
        Probability density function.

    cdf(x, xi, kappa, psi, lmbd)
        Cumulative distribution function.


    Note
    ----
    Implementation based on Section 4.3.11 of Pewsey et al. (2014)
    """

    def _validate_params(self, xi, kappa, psi, lmbd):
        return (
            (0 <= xi <= np.pi * 2)
            and (kappa >= 0)
            and (-np.inf <= psi <= np.inf)
            and (-1 <= lmbd <= 1)
        )

    def _argcheck(self, xi, kappa, psi, lmbd):
        if self._validate_params(xi, kappa, psi, lmbd):
            self._c = _c_jonespewsey(xi, kappa, psi)
            return True
        else:
            return False

    def _pdf(self, x, xi, kappa, psi, lmbd):

        if np.all(kappa < 0.001):
            return 1 / (2 * np.pi) * (1 + lmbd * np.sin(x - xi))
        else:
            if np.isclose(np.abs(psi), 0).all():
                return (
                    1
                    / (2 * np.pi * i0(kappa))
                    * np.exp(kappa * np.cos(x - xi))
                    * (1 + lmbd * np.sin(x - xi))
                )
            else:
                return (
                    (1 + lmbd * np.sin(x - xi))
                    * _kernel_jonespewsey(x, xi, kappa, psi)
                    / self._c
                )

    def _cdf(self, x, xi, kappa, psi, lmbd):
        @np.vectorize
        def _cdf_single(x, xi, kappa, psi, lmbd):
            return quad(self._pdf, a=0, b=x, args=(xi, kappa, psi, lmbd))

        return _cdf_single(x, xi, kappa, psi, lmbd)

jonespewsey_asymext_gen

Bases: rv_continuous

Asymmetric Extended Jones-Pewsey Distribution

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Implementation from 4.3.12 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
class jonespewsey_asymext_gen(rv_continuous):
    """Asymmetric Extended Jones-Pewsey Distribution

    Methods
    -------
    pdf(x, xi, kappa, psi, nu)
        Probability density function.

    cdf(x, xi, kappa, psi, nu)
        Cumulative distribution function.


    Note
    ----
    Implementation from 4.3.12 of Pewsey et al. (2014)
    """

    def _validate_params(self, xi, kappa, psi, nu):
        return (
            (0 <= xi <= np.pi * 2)
            and (kappa >= 0)
            and (-np.inf <= psi <= np.inf)
            and (0 <= nu < 1)
        )

    def _argcheck(self, xi, kappa, psi, nu):
        if self._validate_params(xi, kappa, psi, nu):
            self._c = _c_jonespewsey_asymext(xi, kappa, psi, nu)
            return True
        else:
            return False

    def _pdf(self, x, xi, kappa, psi, nu):
        return _kernel_jonespewsey_asymext(x, xi, kappa, psi, nu) / self._c

    def _cdf(self, x, xi, kappa, psi, nu):
        @np.vectorize
        def _cdf_single(x, xi, kappa, psi, nu):
            return quad(self._pdf, a=0, b=x, args=(xi, kappa, psi, nu))

        return _cdf_single(x, xi, kappa, psi, nu)

inverse_batschelet_gen

Bases: rv_continuous

Inverse Batschelet distribution.

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Implementation from 4.3.13 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
class inverse_batschelet_gen(rv_continuous):
    """Inverse Batschelet distribution.

    Methods
    -------
    pdf(x, xi, kappa, psi, nu, lmbd)
        Probability density function.

    cdf(x, xi, kappa, psi, nu, lmbd)
        Cumulative distribution function.


    Note
    ----
    Implementation from 4.3.13 of Pewsey et al. (2014)
    """

    def _validate_params(self, xi, kappa, nu, lmbd):
        return (
            (0 <= xi <= np.pi * 2)
            and (kappa >= 0)
            and (-1 <= nu <= 1)
            and (-1 <= lmbd <= 1)
        )

    def _argcheck(self, xi, kappa, nu, lmbd):
        if self._validate_params(xi, kappa, nu, lmbd):
            self._c = _c_invbatschelet(kappa, lmbd)
            if np.isclose(lmbd, -1).all():
                self.con1, self.con2 = 0, 0
            else:
                self.con1 = (1 - lmbd) / (1 + lmbd)
                self.con2 = (2 * lmbd) / (1 + lmbd)
            return True
        else:
            return False

    def _pdf(self, x, xi, kappa, nu, lmbd):

        arg1 = _tnu(x, nu, xi)
        arg2 = _slmbdinv(arg1, lmbd)

        if np.isclose(lmbd, -1).all():
            return self._c * np.exp(kappa * np.cos(arg1 - np.sin(arg1)))
        else:
            return self._c * np.exp(kappa * np.cos(self.con1 * arg1 + self.con2 * arg2))

    def _cdf(self, x, xi, kappa, nu, lmbd):
        @np.vectorize
        def _cdf_single(x, xi, kappa, nu, lmbd):
            return quad(self._pdf, a=0, b=x, args=(xi, kappa, nu, lmbd))

        return _cdf_single(x, xi, kappa, nu, lmbd)