Skip to content

Distributions

CircularContinuous

Bases: rv_continuous

Base class for circular distributions with fixed loc=0 and scale=1.

Notes
  • loc/scale are intentionally removed from the user-facing API; the named parameters of each distribution already encode location/shape.
  • Circular data are assumed to be pre-wrapped to [0, 2π); for convenience every public method wraps angular inputs to that support.
  • Cumulative methods remain circular/periodic under this wrapping (cdf(θ + 2π) == cdf(θ)).
Source code in pycircstat2/distributions.py
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
class CircularContinuous(rv_continuous):
    """
    Base class for circular distributions with fixed loc=0 and scale=1.

    Notes
    -----
    - ``loc``/``scale`` are intentionally removed from the user-facing API; the
      named parameters of each distribution already encode location/shape.
    - Circular data are assumed to be pre-wrapped to ``[0, 2π)``; for
      convenience every public method wraps angular inputs to that support.
    - Cumulative methods remain circular/periodic under this wrapping
      (``cdf(θ + 2π) == cdf(θ)``).
    """

    _loc_default = 0.0
    _scale_default = 1.0

    def __init__(
        self,
        momtype=1,
        a=None,
        b=None,
        *,
        support=None,
        xtol=1e-14,
        badvalue=None,
        name=None,
        longname=None,
        shapes=None,
        seed=None,
    ):
        if support is not None:
            support_a, support_b = support
            if a is None:
                a = support_a
            if b is None:
                b = support_b
        if a is None:
            a = 0.0
        if b is None:
            b = 2 * np.pi

        super().__init__(
            momtype=momtype,
            a=a,
            b=b,
            xtol=xtol,
            badvalue=badvalue,
            name=name,
            longname=longname,
            shapes=shapes,
            seed=seed,
        )

        self._circular_arg_wrapped = False
        self._wrap_arg_parsers()
        self._lower_bound, self._period = self._compute_period()
        self._normalization_cache = {}

    # ------------------------------------------------------------------
    # Internal helpers
    # ------------------------------------------------------------------
    def _get_normalization_cache(self):
        cache = getattr(self, "_normalization_cache", None)
        if cache is None:
            cache = {}
            self._normalization_cache = cache
        return cache

    def _clear_normalization_cache(self):
        self._normalization_cache = {}

    def _wrap_arg_parsers(self):
        """Ensure internal arg-parsing keeps loc/scale fixed to defaults."""
        if getattr(self, "_circular_arg_wrapped", False):
            return

        for attr in ("_parse_args", "_parse_args_rvs", "_parse_args_stats"):
            original = getattr(self, attr)

            def wrapper(this, *args, __orig=original, __name=attr, **kwargs):
                clean_kwargs = this._clean_loc_scale_kwargs(kwargs, caller=__name)
                return __orig(*args, **clean_kwargs)

            setattr(self, attr, types.MethodType(wrapper, self))

        self._circular_arg_wrapped = True

    def _compute_period(self):
        try:
            lower = float(self.a)
            upper = float(self.b)
        except (TypeError, ValueError):
            return None, None

        period = upper - lower
        if not np.isfinite(period) or period <= 0:
            return None, None
        return lower, period

    def _wrap_angles(self, values):
        if self._period is None or self._lower_bound is None:
            return values

        try:
            arr = np.asarray(values, dtype=float)
        except (TypeError, ValueError):
            return values

        if arr.size == 0:
            return arr

        wrapped = np.mod(arr - self._lower_bound, self._period) + self._lower_bound
        upper_bound = self._lower_bound + self._period
        if np.isfinite(upper_bound):
            tol = np.finfo(float).eps * max(1.0, abs(upper_bound))
            if np.isscalar(values):
                if np.isclose(values, upper_bound, rtol=0.0, atol=tol):
                    return upper_bound
            else:
                mask = np.isclose(arr, upper_bound, rtol=0.0, atol=tol)
                if np.any(mask):
                    wrapped = wrapped.copy()
                    wrapped[mask] = upper_bound
        if np.isscalar(values):
            return float(wrapped)
        return wrapped

    def _init_rng(self, random_state):
        """
        Normalize the ``random_state`` argument to a NumPy ``Generator``.

        Accepts integers, ``RandomState`` instances, ``Generator`` objects, or
        ``None`` (in which case the distribution's cached generator is used).
        """
        candidate = random_state if random_state is not None else getattr(self, "_random_state", None)

        if isinstance(candidate, np.random.Generator):
            return candidate

        if isinstance(candidate, np.random.RandomState):
            seed = candidate.randint(0, 2**32)
            generator = np.random.default_rng(seed)
            if random_state is None:
                self._random_state = generator
            return generator

        if candidate is None:
            generator = np.random.default_rng()
            self._random_state = generator
            return generator

        try:
            generator = np.random.default_rng(candidate)
        except TypeError as err:  # pragma: no cover - defensive branch
            raise TypeError(
                "random_state must be None, an int seed, RandomState, or Generator."
            ) from err

        if random_state is None:
            self._random_state = generator

        return generator

    def _prepare_call_kwargs(self, kwargs, caller):
        if not kwargs:
            return {}
        return self._clean_loc_scale_kwargs(dict(kwargs), caller=caller)

    def _separate_shape_parameters(self, args, kwargs, caller):
        """
        Split positional/keyword shape parameters from kwargs for functions that
        delegate to SciPy helpers lacking keyword support (e.g. ``expect``).
        """
        if not kwargs:
            return tuple(args), {}

        remaining_kwargs = dict(kwargs)
        shape_args = list(args)

        shapespec = getattr(self, "shapes", None)
        if shapespec:
            shape_names = [name.strip() for name in shapespec.split(",") if name.strip()]
            for idx, name in enumerate(shape_names):
                if name not in remaining_kwargs:
                    continue
                value = remaining_kwargs.pop(name)
                if idx < len(shape_args):
                    existing = shape_args[idx]
                    try:
                        equal = np.allclose(existing, value)
                    except Exception:
                        equal = existing == value
                    if not equal:
                        raise TypeError(
                            f"{self._dist_name(caller)} received conflicting values for `{name}`."
                        )
                else:
                    shape_args.append(value)

        return tuple(shape_args), remaining_kwargs

    def _clean_loc_scale_kwargs(self, kwargs, *, caller):
        if not kwargs:
            return kwargs

        cleaned = kwargs
        mutated = False

        if "loc" in kwargs:
            loc_val = kwargs["loc"]
            if not self._is_default_value(loc_val, self._loc_default):
                raise TypeError(
                    f"{self._dist_name(caller)} does not support a free `loc` parameter."
                )
            cleaned = dict(cleaned) if not mutated else cleaned
            cleaned.pop("loc", None)
            mutated = True

        if "scale" in kwargs:
            scale_val = kwargs["scale"]
            if not self._is_default_value(scale_val, self._scale_default):
                raise TypeError(
                    f"{self._dist_name(caller)} does not support a free `scale` parameter."
                )
            if not mutated:
                cleaned = dict(cleaned)
                mutated = True
            cleaned.pop("scale", None)
            mutated = True

        forbidden_aliases = ("floc", "fscale", "fix_loc", "fix_scale")
        for alias in forbidden_aliases:
            if alias in kwargs:
                raise TypeError(
                    f"{self._dist_name(caller)} does not support `{alias}`; the distribution fixes location/scale."
                )

        return cleaned if mutated else kwargs

    def _is_default_value(self, value, default):
        try:
            arr = np.asarray(value)
        except Exception:  # pragma: no cover - defensive
            return False
        if arr.size == 0:
            return True
        try:
            return np.allclose(arr, default)
        except TypeError:  # pragma: no cover - fallback if casting fails
            return False

    def _dist_name(self, caller: str) -> str:
        dist_name = getattr(self, "name", None)
        if dist_name:
            return f"{dist_name}.{caller}"
        return f"{self.__class__.__name__}.{caller}"

    def _normalization_cache_key(self, *params):
        key_components = []
        for param in params:
            try:
                arr = np.asarray(param, dtype=float)
            except (TypeError, ValueError):
                return None
            if arr.ndim > 1 or arr.size > 1:
                return None
            try:
                scalar = arr.item() if isinstance(arr, np.ndarray) else float(arr)
            except (TypeError, ValueError):
                try:
                    scalar = float(arr)
                except (TypeError, ValueError):
                    return None
            key_components.append(float(scalar))
        return tuple(key_components)

    def _get_cached_normalizer(self, compute, *params):
        key = self._normalization_cache_key(*params)
        if key is None:
            return compute()
        cache = self._get_normalization_cache()
        if key not in cache:
            cache[key] = compute()
        return cache[key]

    def freeze(self, *args, **kwds) -> "CircularContinuousFrozen":
        """
        Return a frozen circular distribution while enforcing fixed loc/scale.
        """
        call_kwargs = self._prepare_call_kwargs(kwds, "freeze")
        return CircularContinuousFrozen(self, *args, **call_kwargs)

    __call__ = freeze

    # ------------------------------------------------------------------
    # Public overrides
    # ------------------------------------------------------------------
    def pdf(self, x, *args, **kwargs):
        call_kwargs = self._prepare_call_kwargs(kwargs, "pdf")
        return super().pdf(self._wrap_angles(x), *args, **call_kwargs)

    def logpdf(self, x, *args, **kwargs):
        call_kwargs = self._prepare_call_kwargs(kwargs, "logpdf")
        return super().logpdf(self._wrap_angles(x), *args, **call_kwargs)

    def cdf(self, x, *args, **kwargs):
        call_kwargs = self._prepare_call_kwargs(kwargs, "cdf")
        return super().cdf(self._wrap_angles(x), *args, **call_kwargs)

    def logcdf(self, x, *args, **kwargs):
        call_kwargs = self._prepare_call_kwargs(kwargs, "logcdf")
        return super().logcdf(self._wrap_angles(x), *args, **call_kwargs)

    def sf(self, x, *args, **kwargs):
        call_kwargs = self._prepare_call_kwargs(kwargs, "sf")
        return super().sf(self._wrap_angles(x), *args, **call_kwargs)

    def logsf(self, x, *args, **kwargs):
        call_kwargs = self._prepare_call_kwargs(kwargs, "logsf")
        return super().logsf(self._wrap_angles(x), *args, **call_kwargs)

    def nnlf(self, theta, x):
        return super().nnlf(theta, self._wrap_angles(x))

    def fit(self, data, *args, **kwds):
        kwds = self._sanitize_fit_kwargs(kwds)
        wrapped_data = self._wrap_angles(data)
        return super().fit(wrapped_data, *args, **kwds)

    def fit_loc_scale(self, *args, **kwargs):  # pragma: no cover - API guard
        raise NotImplementedError(
            "Circular distributions have fixed location and scale; use `fit` for shape parameters only."
        )

    def _sanitize_fit_kwargs(self, kwds):
        if not kwds:
            kwds = {}
        else:
            kwds = dict(kwds)

        # Reject attempts to seed loc/scale with non-default values.
        for key, default in (("loc", self._loc_default), ("scale", self._scale_default)):
            if key in kwds:
                if not self._is_default_value(kwds[key], default):
                    raise TypeError(
                        f"{self._dist_name('fit')} fixes `{key}` to {default}; remove the argument."
                    )
                kwds.pop(key)

        for key in ("fix_loc", "fix_scale"):
            if key in kwds:
                raise TypeError(
                    f"{self._dist_name('fit')} does not expose `{key}`; the distribution is already fixed."
                )

        for key, default in (("floc", self._loc_default), ("fscale", self._scale_default)):
            if key in kwds:
                if not self._is_default_value(kwds[key], default):
                    raise TypeError(
                        f"{self._dist_name('fit')} requires `{key}` == {default}."
                    )
                kwds.pop(key)

        kwds["floc"] = self._loc_default
        kwds["fscale"] = self._scale_default
        return kwds

    def _attach_methods(self):  # pragma: no cover - mirrors parent for pickling
        super()._attach_methods()
        # Reapply wrappers; _attach_methods is used during unpickling.
        self._circular_arg_wrapped = False
        self._wrap_arg_parsers()

    def _wrap_direction(self, angle: float) -> float:
        """
        Wrap a direction onto the distribution's support if known, otherwise [0, 2π).
        """
        if self._lower_bound is not None and self._period is not None:
            return float(self._wrap_angles(angle))
        return float(angmod(angle))

    # ------------------------------------------------------------------
    # Numeric integration helpers
    # ------------------------------------------------------------------
    def _cdf_integral(
        self,
        x,
        integrand,
        params,
        *,
        lower=None,
        upper=None,
        epsabs=1e-9,
        epsrel=1e-9,
        limit=200,
    ):
        """
        Numerically integrate a one-dimensional PDF to obtain CDF values.

        Evaluates the cumulative integral of ``integrand`` from ``lower`` to each
        point in ``x``, reusing work across sorted evaluation points to minimise
        the number of quadrature calls.
        """
        if np.isscalar(x):
            x_vals = np.array([float(x)], dtype=float)
            scalar_input = True
        else:
            x_arr = np.asarray(x, dtype=float)
            x_vals = x_arr.ravel()
            scalar_input = False
            original_shape = x_arr.shape

        if x_vals.size == 0:
            if scalar_input:
                return float()
            return np.empty(original_shape, dtype=float)

        params = tuple(params)
        lower_bound = float(self.a if lower is None else lower)
        upper_bound = float(self.b if upper is None else upper)

        def scalar_integrand(value, *args):
            out = integrand(value, *args)
            arr = np.asarray(out, dtype=float)
            if arr.ndim == 0:
                return float(arr)
            return float(arr.reshape(-1)[0])

        results = np.zeros_like(x_vals, dtype=float)
        sorted_indices = np.argsort(x_vals, kind="mergesort")
        sorted_vals = x_vals[sorted_indices]

        cumulative = 0.0
        current = lower_bound

        for order_idx, orig_idx in enumerate(sorted_indices):
            value = float(sorted_vals[order_idx])

            if not np.isfinite(value):
                results[orig_idx] = np.nan
                continue

            if value <= lower_bound:
                results[orig_idx] = 0.0
                continue

            clipped = min(value, upper_bound)
            if clipped > current + 1e-15:
                segment, _ = quad(
                    scalar_integrand,
                    current,
                    clipped,
                    args=params,
                    epsabs=epsabs,
                    epsrel=epsrel,
                    limit=limit,
                )
                cumulative += segment
                current = clipped

            if value >= upper_bound:
                cumulative = 1.0
                current = upper_bound
                results[orig_idx] = 1.0
            else:
                results[orig_idx] = cumulative

        results = np.clip(results, 0.0, 1.0)

        if scalar_input:
            return float(results[0])
        return results.reshape(original_shape)

    def _cdf_from_pdf(self, x, *params, **quad_kwargs):
        """Convenience wrapper around `_cdf_integral` using ``self._pdf``."""
        return self._cdf_integral(
            x,
            self._pdf,
            params,
            lower=quad_kwargs.pop("lower", None),
            upper=quad_kwargs.pop("upper", None),
            epsabs=quad_kwargs.pop("epsabs", 1e-9),
            epsrel=quad_kwargs.pop("epsrel", 1e-9),
            limit=quad_kwargs.pop("limit", 200),
        )

    # ------------------------------------------------------------------
    # Circular descriptive helpers
    # ------------------------------------------------------------------
    def trig_moment(self, p: int = 1, *args, **kwargs) -> complex:
        """
        Circular (trigonometric) moment m_p = E[e^{i p Θ}] = C_p + i S_p.

        Falls back to numeric evaluation via ``self.expect``; subclasses may
        override with closed-form expressions.
        """
        shape_args, non_shape_kwargs = self._separate_shape_parameters(args, kwargs, "trig_moment")
        call_kwargs = self._prepare_call_kwargs(non_shape_kwargs, "trig_moment")
        C_p = float(
            np.asarray(self.expect(lambda x: np.cos(p * x), args=shape_args, **call_kwargs))
        )
        S_p = float(
            np.asarray(self.expect(lambda x: np.sin(p * x), args=shape_args, **call_kwargs))
        )
        return complex(C_p, S_p)

    def r(self, *args, **kwargs) -> float:
        """Mean resultant length R = |m₁|."""
        m1 = self.trig_moment(1, *args, **kwargs)
        return float(np.clip(abs(m1), 0.0, 1.0))

    def mean(self, *args, **kwargs) -> float:
        """Circular mean direction μ = arg(m₁)."""
        m1 = self.trig_moment(1, *args, **kwargs)
        R = np.clip(abs(m1), 0.0, 1.0)
        if np.isclose(R, 0.0, atol=1e-12):
            return float("nan")
        return self._wrap_direction(np.angle(m1))

    def median(self, *args, **kwargs) -> float:
        """Circular median (50% quantile)."""
        call_kwargs = self._prepare_call_kwargs(kwargs, "median")
        return float(super().ppf(0.5, *args, **call_kwargs))

    def var(self, *args, **kwargs) -> float:
        """Circular variance V = 1 - R."""
        return float(1.0 - self.r(*args, **kwargs))

    def std(self, *args, **kwargs) -> float:
        """Circular standard deviation s = sqrt(-2 ln R)."""
        R = np.clip(self.r(*args, **kwargs), 0.0, 1.0)
        if np.isclose(R, 0.0, atol=1e-12):
            return float("inf")
        return float(np.sqrt(max(0.0, -2.0 * np.log(np.clip(R, np.finfo(float).tiny, 1.0)))))

    def dispersion(self, *args, **kwargs) -> float:
        """Circular dispersion δ̂ = (1 - ρ₂) / (2 ρ₁²)."""
        m1 = self.trig_moment(1, *args, **kwargs)
        r1 = np.clip(abs(m1), 0.0, 1.0)
        if np.isclose(r1, 0.0, atol=1e-12):
            return float("inf")
        m2 = self.trig_moment(2, *args, **kwargs)
        r2 = np.clip(abs(m2), 0.0, 1.0)
        return float((1.0 - r2) / (2.0 * r1 * r1))

    def skewness(self, *args, **kwargs) -> float:
        """Pewsey-style circular skewness."""
        m1 = self.trig_moment(1, *args, **kwargs)
        u1 = np.angle(m1)
        r1 = np.clip(abs(m1), 0.0, 1.0)
        m2 = self.trig_moment(2, *args, **kwargs)
        u2 = np.angle(m2)
        r2 = np.clip(abs(m2), 0.0, 1.0)

        denom_base = max(0.0, 1.0 - r1)
        if np.isclose(denom_base, 0.0, atol=1e-12):
            return float("nan")
        denom = denom_base**1.5
        return float((r2 * np.sin(u2 - 2.0 * u1)) / denom)

    def kurtosis(self, *args, **kwargs) -> float:
        """Pewsey-style circular kurtosis."""
        m1 = self.trig_moment(1, *args, **kwargs)
        u1 = np.angle(m1)
        r1 = np.clip(abs(m1), 0.0, 1.0)
        m2 = self.trig_moment(2, *args, **kwargs)
        u2 = np.angle(m2)
        r2 = np.clip(abs(m2), 0.0, 1.0)

        denom_base = max(0.0, 1.0 - r1)
        if np.isclose(denom_base, 0.0, atol=1e-12):
            return float("nan")
        denom = denom_base**2
        return float((r2 * np.cos(u2 - 2.0 * u1) - r1**4) / denom)

    def stats(self, *args, **kwargs):
        """Convenience bundle of circular descriptive statistics."""
        m1 = self.trig_moment(1, *args, **kwargs)
        r1 = np.clip(abs(m1), 0.0, 1.0)
        u1 = np.angle(m1)

        r1_is_zero = np.isclose(r1, 0.0, atol=1e-12)
        mean_val = float("nan") if r1_is_zero else self._wrap_direction(u1)

        m2 = self.trig_moment(2, *args, **kwargs)
        r2 = np.clip(abs(m2), 0.0, 1.0)
        u2 = np.angle(m2)

        denom_base = max(0.0, 1.0 - r1)
        if np.isclose(denom_base, 0.0, atol=1e-12):
            skew = float("nan")
            kurt = float("nan")
        else:
            skew = float((r2 * np.sin(u2 - 2.0 * u1)) / (denom_base**1.5))
            kurt = float((r2 * np.cos(u2 - 2.0 * u1) - r1**4) / (denom_base**2))

        std_val = float("inf") if r1_is_zero else float(
            np.sqrt(max(0.0, -2.0 * np.log(np.clip(r1, np.finfo(float).tiny, 1.0))))
        )
        dispersion_val = float("inf") if r1_is_zero else float((1.0 - r2) / (2.0 * r1 * r1))

        return {
            "mean": mean_val,
            "median": self.median(*args, **kwargs),
            "r": float(r1),
            "var": float(1.0 - r1),
            "std": std_val,
            "dispersion": dispersion_val,
            "skewness": skew,
            "kurtosis": kurt,
        }

freeze(*args, **kwds)

Return a frozen circular distribution while enforcing fixed loc/scale.

Source code in pycircstat2/distributions.py
392
393
394
395
396
397
def freeze(self, *args, **kwds) -> "CircularContinuousFrozen":
    """
    Return a frozen circular distribution while enforcing fixed loc/scale.
    """
    call_kwargs = self._prepare_call_kwargs(kwds, "freeze")
    return CircularContinuousFrozen(self, *args, **call_kwargs)

trig_moment(p=1, *args, **kwargs)

Circular (trigonometric) moment m_p = E[e^{i p Θ}] = C_p + i S_p.

Falls back to numeric evaluation via self.expect; subclasses may override with closed-form expressions.

Source code in pycircstat2/distributions.py
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
def trig_moment(self, p: int = 1, *args, **kwargs) -> complex:
    """
    Circular (trigonometric) moment m_p = E[e^{i p Θ}] = C_p + i S_p.

    Falls back to numeric evaluation via ``self.expect``; subclasses may
    override with closed-form expressions.
    """
    shape_args, non_shape_kwargs = self._separate_shape_parameters(args, kwargs, "trig_moment")
    call_kwargs = self._prepare_call_kwargs(non_shape_kwargs, "trig_moment")
    C_p = float(
        np.asarray(self.expect(lambda x: np.cos(p * x), args=shape_args, **call_kwargs))
    )
    S_p = float(
        np.asarray(self.expect(lambda x: np.sin(p * x), args=shape_args, **call_kwargs))
    )
    return complex(C_p, S_p)

r(*args, **kwargs)

Mean resultant length R = |m₁|.

Source code in pycircstat2/distributions.py
613
614
615
616
def r(self, *args, **kwargs) -> float:
    """Mean resultant length R = |m₁|."""
    m1 = self.trig_moment(1, *args, **kwargs)
    return float(np.clip(abs(m1), 0.0, 1.0))

mean(*args, **kwargs)

Circular mean direction μ = arg(m₁).

Source code in pycircstat2/distributions.py
618
619
620
621
622
623
624
def mean(self, *args, **kwargs) -> float:
    """Circular mean direction μ = arg(m₁)."""
    m1 = self.trig_moment(1, *args, **kwargs)
    R = np.clip(abs(m1), 0.0, 1.0)
    if np.isclose(R, 0.0, atol=1e-12):
        return float("nan")
    return self._wrap_direction(np.angle(m1))

median(*args, **kwargs)

Circular median (50% quantile).

Source code in pycircstat2/distributions.py
626
627
628
629
def median(self, *args, **kwargs) -> float:
    """Circular median (50% quantile)."""
    call_kwargs = self._prepare_call_kwargs(kwargs, "median")
    return float(super().ppf(0.5, *args, **call_kwargs))

var(*args, **kwargs)

Circular variance V = 1 - R.

Source code in pycircstat2/distributions.py
631
632
633
def var(self, *args, **kwargs) -> float:
    """Circular variance V = 1 - R."""
    return float(1.0 - self.r(*args, **kwargs))

std(*args, **kwargs)

Circular standard deviation s = sqrt(-2 ln R).

Source code in pycircstat2/distributions.py
635
636
637
638
639
640
def std(self, *args, **kwargs) -> float:
    """Circular standard deviation s = sqrt(-2 ln R)."""
    R = np.clip(self.r(*args, **kwargs), 0.0, 1.0)
    if np.isclose(R, 0.0, atol=1e-12):
        return float("inf")
    return float(np.sqrt(max(0.0, -2.0 * np.log(np.clip(R, np.finfo(float).tiny, 1.0)))))

dispersion(*args, **kwargs)

Circular dispersion δ̂ = (1 - ρ₂) / (2 ρ₁²).

Source code in pycircstat2/distributions.py
642
643
644
645
646
647
648
649
650
def dispersion(self, *args, **kwargs) -> float:
    """Circular dispersion δ̂ = (1 - ρ₂) / (2 ρ₁²)."""
    m1 = self.trig_moment(1, *args, **kwargs)
    r1 = np.clip(abs(m1), 0.0, 1.0)
    if np.isclose(r1, 0.0, atol=1e-12):
        return float("inf")
    m2 = self.trig_moment(2, *args, **kwargs)
    r2 = np.clip(abs(m2), 0.0, 1.0)
    return float((1.0 - r2) / (2.0 * r1 * r1))

skewness(*args, **kwargs)

Pewsey-style circular skewness.

Source code in pycircstat2/distributions.py
652
653
654
655
656
657
658
659
660
661
662
663
664
665
def skewness(self, *args, **kwargs) -> float:
    """Pewsey-style circular skewness."""
    m1 = self.trig_moment(1, *args, **kwargs)
    u1 = np.angle(m1)
    r1 = np.clip(abs(m1), 0.0, 1.0)
    m2 = self.trig_moment(2, *args, **kwargs)
    u2 = np.angle(m2)
    r2 = np.clip(abs(m2), 0.0, 1.0)

    denom_base = max(0.0, 1.0 - r1)
    if np.isclose(denom_base, 0.0, atol=1e-12):
        return float("nan")
    denom = denom_base**1.5
    return float((r2 * np.sin(u2 - 2.0 * u1)) / denom)

kurtosis(*args, **kwargs)

Pewsey-style circular kurtosis.

Source code in pycircstat2/distributions.py
667
668
669
670
671
672
673
674
675
676
677
678
679
680
def kurtosis(self, *args, **kwargs) -> float:
    """Pewsey-style circular kurtosis."""
    m1 = self.trig_moment(1, *args, **kwargs)
    u1 = np.angle(m1)
    r1 = np.clip(abs(m1), 0.0, 1.0)
    m2 = self.trig_moment(2, *args, **kwargs)
    u2 = np.angle(m2)
    r2 = np.clip(abs(m2), 0.0, 1.0)

    denom_base = max(0.0, 1.0 - r1)
    if np.isclose(denom_base, 0.0, atol=1e-12):
        return float("nan")
    denom = denom_base**2
    return float((r2 * np.cos(u2 - 2.0 * u1) - r1**4) / denom)

stats(*args, **kwargs)

Convenience bundle of circular descriptive statistics.

Source code in pycircstat2/distributions.py
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
def stats(self, *args, **kwargs):
    """Convenience bundle of circular descriptive statistics."""
    m1 = self.trig_moment(1, *args, **kwargs)
    r1 = np.clip(abs(m1), 0.0, 1.0)
    u1 = np.angle(m1)

    r1_is_zero = np.isclose(r1, 0.0, atol=1e-12)
    mean_val = float("nan") if r1_is_zero else self._wrap_direction(u1)

    m2 = self.trig_moment(2, *args, **kwargs)
    r2 = np.clip(abs(m2), 0.0, 1.0)
    u2 = np.angle(m2)

    denom_base = max(0.0, 1.0 - r1)
    if np.isclose(denom_base, 0.0, atol=1e-12):
        skew = float("nan")
        kurt = float("nan")
    else:
        skew = float((r2 * np.sin(u2 - 2.0 * u1)) / (denom_base**1.5))
        kurt = float((r2 * np.cos(u2 - 2.0 * u1) - r1**4) / (denom_base**2))

    std_val = float("inf") if r1_is_zero else float(
        np.sqrt(max(0.0, -2.0 * np.log(np.clip(r1, np.finfo(float).tiny, 1.0))))
    )
    dispersion_val = float("inf") if r1_is_zero else float((1.0 - r2) / (2.0 * r1 * r1))

    return {
        "mean": mean_val,
        "median": self.median(*args, **kwargs),
        "r": float(r1),
        "var": float(1.0 - r1),
        "std": std_val,
        "dispersion": dispersion_val,
        "skewness": skew,
        "kurtosis": kurt,
    }

CircularContinuousFrozen

Bases: rv_continuous_frozen

Frozen circular distribution exposing circular descriptive helpers.

Source code in pycircstat2/distributions.py
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
class CircularContinuousFrozen(rv_continuous_frozen):
    """Frozen circular distribution exposing circular descriptive helpers."""

    def _call_dist_method(self, name, *args, **kwargs):
        call_kwargs = dict(self.kwds)
        call_kwargs.update(kwargs)
        call_args = self.args + args
        return getattr(self.dist, name)(*call_args, **call_kwargs)

    def trig_moment(self, p: int = 1, *args, **kwargs) -> complex:
        call_kwargs = dict(self.kwds)
        call_kwargs.update(kwargs)
        call_args = self.args + args
        return self.dist.trig_moment(p, *call_args, **call_kwargs)

    def r(self, *args, **kwargs) -> float:
        return self._call_dist_method("r", *args, **kwargs)

    def dispersion(self, *args, **kwargs) -> float:
        return self._call_dist_method("dispersion", *args, **kwargs)

    def skewness(self, *args, **kwargs) -> float:
        return self._call_dist_method("skewness", *args, **kwargs)

    def kurtosis(self, *args, **kwargs) -> float:
        return self._call_dist_method("kurtosis", *args, **kwargs)

    def stats(self, *args, **kwargs):
        return self._call_dist_method("stats", *args, **kwargs)

circularuniform_gen

Bases: CircularContinuous

Continuous Circular Uniform Distribution

circularuniform

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

ppf

Percent-point function (inverse of CDF).

rvs

Random variates.

Source code in pycircstat2/distributions.py
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
class circularuniform_gen(CircularContinuous):
    """Continuous Circular Uniform Distribution

    ![circularuniform](../images/circ-mod-circularuniform.png)

    Methods
    -------
    pdf(x)
        Probability density function.

    cdf(x)
        Cumulative distribution function.

    ppf(q)
        Percent-point function (inverse of CDF).

    rvs(size, random_state) 
        Random variates.
    """

    def _pdf(self, x):
        return 1 / (2 * np.pi)

    def pdf(self, x, *args, **kwargs):
        r"""
        Probability density function of the Circular Uniform distribution.

        $$
        f(\theta) = \frac{1}{2\pi}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, *args, **kwargs)

    def _cdf(self, x):
        return x / (2 * np.pi)

    def cdf(self, x, *args, **kwargs):
        r"""
        Cumulative distribution function of the Circular Uniform distribution.

        $$
        F(\theta) = \frac{\theta}{2\pi}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, *args, **kwargs)

    def _ppf(self, q):
        return 2 * np.pi * q

    def ppf(self, q, *args, **kwargs):
        r"""
        Percent-point function (inverse of the CDF) of the Circular Uniform distribution.

        $$
        Q(q) = F^{-1}(q) = 2\pi q, \space 0 \leq q \leq 1
        $$

        Parameters
        ----------
        q : array_like
            Quantiles to evaluate.

        Returns
        -------
        ppf_values : array_like
            Values at the given quantiles.
        """
        return super().ppf(q, *args, **kwargs)

    def _rvs(self, size=None, random_state=None):
        rng = self._init_rng(random_state)
        return rng.uniform(0.0, 2 * np.pi, size=size)

    def rvs(self, size=None, random_state=None):
        """
        Random variate generation for the circular uniform distribution.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Number of samples to draw. If ``None`` (default), return a single value.
        random_state : np.random.Generator, np.random.RandomState, or None, optional
            Random number generator to use. If ``None``, fall back to the
            distribution's internal generator.

        Returns
        -------
        samples : ndarray or float
            Samples drawn uniformly from the interval ``[0, 2π)``.
        """
        return self._rvs(size=size, random_state=random_state)

    def fit(self, data):
        """
        The circular uniform distribution has no free parameters to estimate,
        so calling ``fit`` is undefined. A ``NotImplementedError`` is raised to
        signal that users should rely on descriptive helpers (e.g.,
        ``circ_mean_and_r``) instead of maximum-likelihood fitting.
        """
        raise NotImplementedError(
            "circularuniform.fit() is undefined: the distribution has no parameters to estimate."
        )

pdf(x, *args, **kwargs)

Probability density function of the Circular Uniform distribution.

\[ f(\theta) = \frac{1}{2\pi} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
def pdf(self, x, *args, **kwargs):
    r"""
    Probability density function of the Circular Uniform distribution.

    $$
    f(\theta) = \frac{1}{2\pi}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, *args, **kwargs)

cdf(x, *args, **kwargs)

Cumulative distribution function of the Circular Uniform distribution.

\[ F(\theta) = \frac{\theta}{2\pi} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
def cdf(self, x, *args, **kwargs):
    r"""
    Cumulative distribution function of the Circular Uniform distribution.

    $$
    F(\theta) = \frac{\theta}{2\pi}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, *args, **kwargs)

ppf(q, *args, **kwargs)

Percent-point function (inverse of the CDF) of the Circular Uniform distribution.

\[ Q(q) = F^{-1}(q) = 2\pi q, \space 0 \leq q \leq 1 \]

Parameters:

Name Type Description Default
q array_like

Quantiles to evaluate.

required

Returns:

Name Type Description
ppf_values array_like

Values at the given quantiles.

Source code in pycircstat2/distributions.py
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
def ppf(self, q, *args, **kwargs):
    r"""
    Percent-point function (inverse of the CDF) of the Circular Uniform distribution.

    $$
    Q(q) = F^{-1}(q) = 2\pi q, \space 0 \leq q \leq 1
    $$

    Parameters
    ----------
    q : array_like
        Quantiles to evaluate.

    Returns
    -------
    ppf_values : array_like
        Values at the given quantiles.
    """
    return super().ppf(q, *args, **kwargs)

rvs(size=None, random_state=None)

Random variate generation for the circular uniform distribution.

Parameters:

Name Type Description Default
size int or tuple of ints

Number of samples to draw. If None (default), return a single value.

None
random_state np.random.Generator, np.random.RandomState, or None

Random number generator to use. If None, fall back to the distribution's internal generator.

None

Returns:

Name Type Description
samples ndarray or float

Samples drawn uniformly from the interval [0, 2π).

Source code in pycircstat2/distributions.py
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
def rvs(self, size=None, random_state=None):
    """
    Random variate generation for the circular uniform distribution.

    Parameters
    ----------
    size : int or tuple of ints, optional
        Number of samples to draw. If ``None`` (default), return a single value.
    random_state : np.random.Generator, np.random.RandomState, or None, optional
        Random number generator to use. If ``None``, fall back to the
        distribution's internal generator.

    Returns
    -------
    samples : ndarray or float
        Samples drawn uniformly from the interval ``[0, 2π)``.
    """
    return self._rvs(size=size, random_state=random_state)

fit(data)

The circular uniform distribution has no free parameters to estimate, so calling fit is undefined. A NotImplementedError is raised to signal that users should rely on descriptive helpers (e.g., circ_mean_and_r) instead of maximum-likelihood fitting.

Source code in pycircstat2/distributions.py
868
869
870
871
872
873
874
875
876
877
def fit(self, data):
    """
    The circular uniform distribution has no free parameters to estimate,
    so calling ``fit`` is undefined. A ``NotImplementedError`` is raised to
    signal that users should rely on descriptive helpers (e.g.,
    ``circ_mean_and_r``) instead of maximum-likelihood fitting.
    """
    raise NotImplementedError(
        "circularuniform.fit() is undefined: the distribution has no parameters to estimate."
    )

triangular_gen

Bases: CircularContinuous

Triangular Distribution

triangular

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

ppf

Closed-form quantile (inverse CDF).

rvs

Random variates via inverse-transform using the closed-form quantile.

fit

Fit the distribution to the data and return the parameter (rho).

Notes

Implementation based on Section 2.2.3 of Jammalamadaka & SenGupta (2001)

Source code in pycircstat2/distributions.py
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
class triangular_gen(CircularContinuous):
    """Triangular Distribution

    ![triangular](../images/circ-mod-triangular.png)

    Methods
    -------
    pdf(x, rho)
        Probability density function.

    cdf(x, rho)
        Cumulative distribution function.

    ppf(q, rho)
        Closed-form quantile (inverse CDF).

    rvs(rho, size=None, random_state=None)
        Random variates via inverse-transform using the closed-form quantile.

    fit(data)
        Fit the distribution to the data and return the parameter (rho).

    Notes
    -----
    Implementation based on Section 2.2.3 of Jammalamadaka & SenGupta (2001)
    """

    def _argcheck(self, rho):
        rho_arr = np.asarray(rho, dtype=float)
        return (rho_arr >= 0.0) & (rho_arr <= 4.0 / np.pi**2)

    def _pdf(self, x, rho):
        return (
            (4 - np.pi**2.0 * rho + 2.0 * np.pi * rho * np.abs(np.pi - x)) / 8.0 / np.pi
        )

    def pdf(self, x, rho, *args, **kwargs):
        r"""
        Probability density function of the Triangular distribution.

        $$
        f(\theta) = \frac{4 - \pi^2 \rho + 2\pi \rho |\pi - \theta|}{8\pi}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        rho : float
            Concentratio parameter, 0 <= rho <= 4/pi^2.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """

        return super().pdf(x, rho, *args, **kwargs)

    def _cdf(self, x, rho):
        x_arr = np.asarray(x, dtype=float)
        rho_arr = np.asarray(rho, dtype=float)
        x_b, rho_b = np.broadcast_arrays(x_arr, rho_arr)

        result = np.zeros_like(x_b, dtype=float)

        # lower branch: 0 <= x <= pi
        mask_lower = (x_b >= 0.0) & (x_b <= np.pi)
        if np.any(mask_lower):
            xl = x_b[mask_lower]
            rl = rho_b[mask_lower]
            result[mask_lower] = ((4 + np.pi**2 * rl) * xl - np.pi * rl * xl**2) / (
                8 * np.pi
            )

        # upper branch: pi < x < 2pi
        mask_upper = (x_b > np.pi) & (x_b < 2 * np.pi)
        if np.any(mask_upper):
            xu = x_b[mask_upper]
            ru = rho_b[mask_upper]
            result[mask_upper] = 0.5 + (
                (4 - 3 * np.pi**2 * ru) * (xu - np.pi)
                + np.pi * ru * (xu**2 - np.pi**2)
            ) / (8 * np.pi)

        # upper tail: x >= 2pi
        result = np.where(x_b >= 2 * np.pi, 1.0, result)

        if np.ndim(result) == 0:
            return float(result)
        return result

    def cdf(self, x, rho, *args, **kwargs):
        r"""
        Cumulative distribution function of the circular triangular distribution on $[0, 2\pi)$.

        $$
        F(\theta;\,\rho)=
        \begin{cases}
        \dfrac{(4+\pi^2\rho)\,\theta - \pi\rho\,\theta^2}{8\pi}, & 0 \le \theta \le \pi,\\[6pt]
        \dfrac{1}{2} + \dfrac{(4 - 3\pi^2\rho)\,(\theta-\pi) + \pi\rho\,(\theta^2-\pi^2)}{8\pi},
            & \pi < \theta < 2\pi.
        \end{cases}
        $$

        (With $F(\theta)=0$ for $\theta<0$ and $F(\theta)=1$ for $\theta\ge 2\pi$.)

        Parameters
        ----------
        x : array_like
            Angles in radians on $[0, 2\pi)$.
        rho : float
            Concentration parameter, $0 \le \rho \le 4/\pi^2$.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, rho, *args, **kwargs)

    def _ppf(self, q, rho):
        q_arr = np.asarray(q, dtype=float)
        rho_arr = np.asarray(rho, dtype=float)
        q_b, rho_b = np.broadcast_arrays(q_arr, rho_arr)

        result = np.empty_like(q_b, dtype=float)

        mask_zero = np.isclose(rho_b, 0.0, atol=1e-12)
        if np.any(mask_zero):
            result[mask_zero] = q_b[mask_zero] * (2 * np.pi)

        mask_general = ~mask_zero
        if np.any(mask_general):
            q_g = q_b[mask_general]
            rho_g = rho_b[mask_general]

            a_left = rho_g
            b_left = -(4 + np.pi**2 * rho_g) / np.pi
            a_right = rho_g
            b_right = (4 - 3 * np.pi**2 * rho_g) / np.pi

            res_general = np.empty_like(q_g, dtype=float)
            mask_left = q_g <= 0.5

            if np.any(mask_left):
                c_left = 8 * q_g[mask_left]
                disc_left = np.clip(
                    b_left[mask_left] ** 2 - 4 * a_left[mask_left] * c_left,
                    0.0,
                    None,
                )
                res_general[mask_left] = (
                    -b_left[mask_left] - np.sqrt(disc_left)
                ) / (2 * a_left[mask_left])

            if np.any(~mask_left):
                c_right = 2 * np.pi**2 * rho_g[~mask_left] - 8 * q_g[~mask_left]
                disc_right = np.clip(
                    b_right[~mask_left] ** 2 - 4 * a_right[~mask_left] * c_right,
                    0.0,
                    None,
                )
                res_general[~mask_left] = (
                    -b_right[~mask_left] + np.sqrt(disc_right)
                ) / (2 * a_right[~mask_left])

            result[mask_general] = res_general

        np.clip(result, 0.0, 2 * np.pi - np.finfo(float).eps, out=result)
        if result.ndim == 0:
            return float(result)
        return result

    def ppf(self, q, rho, *args, **kwargs):
        r"""
        Percent-point function (quantile) of the circular triangular distribution on $[0, 2\pi)$.

        For $\rho=0$ (circular uniform):

        $$
        \operatorname{PPF}(q;0)=2\pi q.
        $$

        For $\rho>0$:

        $$
        \operatorname{PPF}(q;\rho)=
        \begin{cases}
        \dfrac{1}{2\rho}\!\left(\dfrac{4+\pi^2\rho}{\pi}
        - \sqrt{\left(\dfrac{4+\pi^2\rho}{\pi}\right)^{\!2} - 32\rho\,q}\right),
        & 0 \le q \le \tfrac{1}{2}, \\[10pt]
        \pi + \dfrac{-\,(4-\pi^2\rho) + \sqrt{(4-\pi^2\rho)^{2} + 32\pi^{2}\rho\,(q-\tfrac{1}{2})}}
        {2\pi\rho},
        & \tfrac{1}{2} < q < 1.
        \end{cases}
        $$

        Parameters
        ----------
        q : array_like
            Quantiles in $[0, 1]$.
        rho : float
            Concentration parameter, $0 \le \rho \le 4/\pi^2$.

        Returns
        -------
        ppf_values : array_like
            Quantiles (angles in radians on $[0, 2\pi)$).
        """
        return super().ppf(q, rho, *args, **kwargs)

    def _rvs(self, rho, size=None, random_state=None):
        rng = self._init_rng(random_state)
        u = rng.uniform(0.0, 1.0, size=size)
        samples = self._ppf(u, rho)
        if np.isscalar(samples):
            return float(samples)
        return np.asarray(samples, dtype=float)

    def rvs(self, rho=None, size=None, random_state=None):
        r"""
        Random variates from the circular triangular distribution on $[0, 2\pi)$.

        Sampling uses **inverse-transform** with the closed-form quantile:
        let $U \sim \mathrm{Unif}(0,1)$ and set $\theta = \operatorname{PPF}(U;\rho)$, where

        - For $\rho = 0$ (circular uniform):

        $$
        \theta = 2\pi U.
        $$

        - For $\rho > 0$ (piecewise quadratic inverse):

        $$
        \theta =
        \begin{cases}
            \dfrac{1}{2\rho}\!\left(\dfrac{4+\pi^2\rho}{\pi}
            - \sqrt{\left(\dfrac{4+\pi^2\rho}{\pi}\right)^{\!2} - 32\rho\,U}\right),
            & 0 \le U \le \tfrac{1}{2}, \\[10pt]
            \pi + \dfrac{-\,(4-\pi^2\rho) + \sqrt{(4-\pi^2\rho)^{2} + 32\pi^{2}\rho\,(U-\tfrac{1}{2})}}
            {2\pi\rho},
            & \tfrac{1}{2} < U < 1.
        \end{cases}
        $$

        Parameters
        ----------
        rho : float, optional
            Concentration, $0 \le \rho \le 4/\pi^2$. Supply explicitly or by
            freezing the distribution.
        size : int or tuple of ints, optional
            Output shape. If ``None`` (default), return a single scalar.
        random_state : int, numpy.random.Generator, numpy.random.RandomState, optional
            PRNG seed or generator. If ``None``, use the distribution's internal RNG.

        Returns
        -------
        samples : ndarray or float
            Angles in radians on $[0, 2\pi)$, with shape ``size``.

        Notes
        -----
        This is equivalent in law to R's **circular** `rtriangular` after
        shifting its output by $+\pi$ modulo $2\pi$.
        """
        rho_val = getattr(self, "rho", None) if rho is None else rho
        if rho_val is None:
            raise ValueError("'rho' must be provided.")
        return self._rvs(rho_val, size=size, random_state=random_state)

    def fit(self, data, *, weights=None, method="mle", return_info=False):
        r"""
        Estimate the concentration parameter $\rho$ of the circular triangular law on $[0,2\pi)$.

        Methods
        -------

        mle (default): 
            maximize the log-likelihood. This solves the 1-D score equation
            $\sum_i \frac{c_i}{4+\rho\,c_i}=0$ with $c_i = 2\pi\,|\,\pi-x_i\,| - \pi^2$.
            Unique solution in $[0, 4/\pi^2)$ or at a boundary.
        moments :
            closed-form $\hat\rho = \max\{0, \min\{4/\pi^2,\ \overline{\cos x}\}\}$.

        Parameters
        ----------
        data : array_like
            Sample angles (radians). Values are wrapped to $[0, 2\pi)$ internally.
        weights : array_like, optional
            Nonnegative sample weights. Broadcastable to `data`. Interpreted as frequencies.
        method : {"mle","moments"}, optional
            Estimation method (see above).
        return_info : bool, optional
            If True, also return a dict with diagnostics (loglik, se, n_effective, method).

        Returns
        -------
        rho_hat : float
            Estimated concentration $\hat\rho \in [0, 4/\pi^2]$.
        info : dict, optional
            Returned only if `return_info=True`. Contains keys:
            {"loglik", "se", "n_effective", "method", "converged"}.

        Notes
        -----
        For this distribution $\mathbb{E}[\cos \Theta]=\rho$, so the method-of-moments
        estimator is simply the (weighted) mean of $\cos x$ clipped to $[0,4/\pi^2]$.
        The MLE solves a strictly monotone score equation, so bracketing root-finding
        is robust and $O(n)$ per evaluation.
        """
        x = np.asarray(data, dtype=float)
        x = np.mod(x, 2*np.pi)

        if weights is None:
            w = np.ones_like(x, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            if np.any(w < 0):
                raise ValueError("weights must be nonnegative")
            # broadcast
            w = np.broadcast_to(w, x.shape).astype(float, copy=False)

        # Effective sample size for diagnostics
        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0:
            raise ValueError("sum of weights must be positive")
        w_norm = w / w_sum
        n_eff = w_sum**2 / np.sum(w**2)  # Kish effective n

        # Method-of-moments (always available; used as fallback/initial intuition)
        r_bar = float(np.sum(w_norm * np.cos(x)))
        rho_mom = float(np.clip(r_bar, 0.0, 4/np.pi**2))

        if method == "moments":
            rho_hat = rho_mom
            # log-likelihood at MoM (for info only)
            y = np.abs(np.pi - x)
            ll = float(np.sum(w * np.log(4 - np.pi**2 * rho_hat + 2*np.pi * rho_hat * y)) - w_sum*np.log(8*np.pi))
            # observed Fisher info for SE
            c = 2*np.pi*y - np.pi**2
            info_obs = float(np.sum(w * (c**2) / (4 + rho_hat*c)**2))
            se = (1.0 / np.sqrt(info_obs)) if info_obs > 0 else np.nan
            if return_info:
                return rho_hat, {"loglik": ll, "se": se, "n_effective": n_eff, "method": "moments", "converged": True}
            return rho_hat

        # --- MLE via monotone root of the score ---
        y = np.abs(np.pi - x)                 # in [0, π]
        c = 2*np.pi*y - np.pi**2              # in [-π^2, π^2]

        def score(rho):
            return float(np.sum(w * (c / (4.0 + rho * c))))

        # Bracket: score(ρ) is strictly decreasing on [0, ρ_max)
        rho_lo = 0.0
        rho_hi = float(4/np.pi**2) - 1e-12

        s_lo = score(rho_lo)  # = (1/4) * sum w*c
        if s_lo <= 0:         # likelihood decreasing at 0 → boundary optimum
            rho_hat = 0.0
            converged = True
        else:
            s_hi = score(rho_hi)  # tends negative if any y_i≈0
            if s_hi >= 0:
                # all mass far from π (extreme case) → boundary at ρ_max
                rho_hat = rho_hi
                converged = True
            else:
                # Unique root inside (0, ρ_max)
                rho_hat = float(brentq(score, rho_lo, rho_hi, xtol=1e-12, rtol=1e-12, maxiter=256))
                converged = True

        # Diagnostics
        ll = float(np.sum(w * np.log(4 - np.pi**2 * rho_hat + 2*np.pi * rho_hat * y)) - w_sum*np.log(8*np.pi))
        info_obs = float(np.sum(w * (c**2) / (4 + rho_hat*c)**2))
        se = (1.0 / np.sqrt(info_obs)) if info_obs > 0 else np.nan

        if return_info:
            return rho_hat, {"loglik": ll, "se": se, "n_effective": n_eff, "method": "mle", "converged": converged}
        return rho_hat

pdf(x, rho, *args, **kwargs)

Probability density function of the Triangular distribution.

\[ f(\theta) = \frac{4 - \pi^2 \rho + 2\pi \rho |\pi - \theta|}{8\pi} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
rho float

Concentratio parameter, 0 <= rho <= 4/pi^2.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
def pdf(self, x, rho, *args, **kwargs):
    r"""
    Probability density function of the Triangular distribution.

    $$
    f(\theta) = \frac{4 - \pi^2 \rho + 2\pi \rho |\pi - \theta|}{8\pi}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    rho : float
        Concentratio parameter, 0 <= rho <= 4/pi^2.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """

    return super().pdf(x, rho, *args, **kwargs)

cdf(x, rho, *args, **kwargs)

Cumulative distribution function of the circular triangular distribution on \([0, 2\pi)\).

\[ F(\theta;\,\rho)= \begin{cases} \dfrac{(4+\pi^2\rho)\,\theta - \pi\rho\,\theta^2}{8\pi}, & 0 \le \theta \le \pi,\\[6pt] \dfrac{1}{2} + \dfrac{(4 - 3\pi^2\rho)\,(\theta-\pi) + \pi\rho\,(\theta^2-\pi^2)}{8\pi}, & \pi < \theta < 2\pi. \end{cases} \]

(With \(F(\theta)=0\) for \(\theta<0\) and \(F(\theta)=1\) for \(\theta\ge 2\pi\).)

Parameters:

Name Type Description Default
x array_like

Angles in radians on \([0, 2\pi)\).

required
rho float

Concentration parameter, \(0 \le \rho \le 4/\pi^2\).

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
def cdf(self, x, rho, *args, **kwargs):
    r"""
    Cumulative distribution function of the circular triangular distribution on $[0, 2\pi)$.

    $$
    F(\theta;\,\rho)=
    \begin{cases}
    \dfrac{(4+\pi^2\rho)\,\theta - \pi\rho\,\theta^2}{8\pi}, & 0 \le \theta \le \pi,\\[6pt]
    \dfrac{1}{2} + \dfrac{(4 - 3\pi^2\rho)\,(\theta-\pi) + \pi\rho\,(\theta^2-\pi^2)}{8\pi},
        & \pi < \theta < 2\pi.
    \end{cases}
    $$

    (With $F(\theta)=0$ for $\theta<0$ and $F(\theta)=1$ for $\theta\ge 2\pi$.)

    Parameters
    ----------
    x : array_like
        Angles in radians on $[0, 2\pi)$.
    rho : float
        Concentration parameter, $0 \le \rho \le 4/\pi^2$.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, rho, *args, **kwargs)

ppf(q, rho, *args, **kwargs)

Percent-point function (quantile) of the circular triangular distribution on \([0, 2\pi)\).

For \(\rho=0\) (circular uniform):

\[ \operatorname{PPF}(q;0)=2\pi q. \]

For \(\rho>0\):

\[ \operatorname{PPF}(q;\rho)= \begin{cases} \dfrac{1}{2\rho}\!\left(\dfrac{4+\pi^2\rho}{\pi} - \sqrt{\left(\dfrac{4+\pi^2\rho}{\pi}\right)^{\!2} - 32\rho\,q}\right), & 0 \le q \le \tfrac{1}{2}, \\[10pt] \pi + \dfrac{-\,(4-\pi^2\rho) + \sqrt{(4-\pi^2\rho)^{2} + 32\pi^{2}\rho\,(q-\tfrac{1}{2})}} {2\pi\rho}, & \tfrac{1}{2} < q < 1. \end{cases} \]

Parameters:

Name Type Description Default
q array_like

Quantiles in \([0, 1]\).

required
rho float

Concentration parameter, \(0 \le \rho \le 4/\pi^2\).

required

Returns:

Name Type Description
ppf_values array_like

Quantiles (angles in radians on \([0, 2\pi)\)).

Source code in pycircstat2/distributions.py
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
def ppf(self, q, rho, *args, **kwargs):
    r"""
    Percent-point function (quantile) of the circular triangular distribution on $[0, 2\pi)$.

    For $\rho=0$ (circular uniform):

    $$
    \operatorname{PPF}(q;0)=2\pi q.
    $$

    For $\rho>0$:

    $$
    \operatorname{PPF}(q;\rho)=
    \begin{cases}
    \dfrac{1}{2\rho}\!\left(\dfrac{4+\pi^2\rho}{\pi}
    - \sqrt{\left(\dfrac{4+\pi^2\rho}{\pi}\right)^{\!2} - 32\rho\,q}\right),
    & 0 \le q \le \tfrac{1}{2}, \\[10pt]
    \pi + \dfrac{-\,(4-\pi^2\rho) + \sqrt{(4-\pi^2\rho)^{2} + 32\pi^{2}\rho\,(q-\tfrac{1}{2})}}
    {2\pi\rho},
    & \tfrac{1}{2} < q < 1.
    \end{cases}
    $$

    Parameters
    ----------
    q : array_like
        Quantiles in $[0, 1]$.
    rho : float
        Concentration parameter, $0 \le \rho \le 4/\pi^2$.

    Returns
    -------
    ppf_values : array_like
        Quantiles (angles in radians on $[0, 2\pi)$).
    """
    return super().ppf(q, rho, *args, **kwargs)

rvs(rho=None, size=None, random_state=None)

Random variates from the circular triangular distribution on \([0, 2\pi)\).

Sampling uses inverse-transform with the closed-form quantile: let \(U \sim \mathrm{Unif}(0,1)\) and set \(\theta = \operatorname{PPF}(U;\rho)\), where

  • For \(\rho = 0\) (circular uniform):
\[ \theta = 2\pi U. \]
  • For \(\rho > 0\) (piecewise quadratic inverse):
\[ \theta = \begin{cases} \dfrac{1}{2\rho}\!\left(\dfrac{4+\pi^2\rho}{\pi} - \sqrt{\left(\dfrac{4+\pi^2\rho}{\pi}\right)^{\!2} - 32\rho\,U}\right), & 0 \le U \le \tfrac{1}{2}, \\[10pt] \pi + \dfrac{-\,(4-\pi^2\rho) + \sqrt{(4-\pi^2\rho)^{2} + 32\pi^{2}\rho\,(U-\tfrac{1}{2})}} {2\pi\rho}, & \tfrac{1}{2} < U < 1. \end{cases} \]

Parameters:

Name Type Description Default
rho float

Concentration, \(0 \le \rho \le 4/\pi^2\). Supply explicitly or by freezing the distribution.

None
size int or tuple of ints

Output shape. If None (default), return a single scalar.

None
random_state (int, Generator, RandomState)

PRNG seed or generator. If None, use the distribution's internal RNG.

None

Returns:

Name Type Description
samples ndarray or float

Angles in radians on \([0, 2\pi)\), with shape size.

Notes

This is equivalent in law to R's circular rtriangular after shifting its output by \(+\pi\) modulo \(2\pi\).

Source code in pycircstat2/distributions.py
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
def rvs(self, rho=None, size=None, random_state=None):
    r"""
    Random variates from the circular triangular distribution on $[0, 2\pi)$.

    Sampling uses **inverse-transform** with the closed-form quantile:
    let $U \sim \mathrm{Unif}(0,1)$ and set $\theta = \operatorname{PPF}(U;\rho)$, where

    - For $\rho = 0$ (circular uniform):

    $$
    \theta = 2\pi U.
    $$

    - For $\rho > 0$ (piecewise quadratic inverse):

    $$
    \theta =
    \begin{cases}
        \dfrac{1}{2\rho}\!\left(\dfrac{4+\pi^2\rho}{\pi}
        - \sqrt{\left(\dfrac{4+\pi^2\rho}{\pi}\right)^{\!2} - 32\rho\,U}\right),
        & 0 \le U \le \tfrac{1}{2}, \\[10pt]
        \pi + \dfrac{-\,(4-\pi^2\rho) + \sqrt{(4-\pi^2\rho)^{2} + 32\pi^{2}\rho\,(U-\tfrac{1}{2})}}
        {2\pi\rho},
        & \tfrac{1}{2} < U < 1.
    \end{cases}
    $$

    Parameters
    ----------
    rho : float, optional
        Concentration, $0 \le \rho \le 4/\pi^2$. Supply explicitly or by
        freezing the distribution.
    size : int or tuple of ints, optional
        Output shape. If ``None`` (default), return a single scalar.
    random_state : int, numpy.random.Generator, numpy.random.RandomState, optional
        PRNG seed or generator. If ``None``, use the distribution's internal RNG.

    Returns
    -------
    samples : ndarray or float
        Angles in radians on $[0, 2\pi)$, with shape ``size``.

    Notes
    -----
    This is equivalent in law to R's **circular** `rtriangular` after
    shifting its output by $+\pi$ modulo $2\pi$.
    """
    rho_val = getattr(self, "rho", None) if rho is None else rho
    if rho_val is None:
        raise ValueError("'rho' must be provided.")
    return self._rvs(rho_val, size=size, random_state=random_state)

fit(data, *, weights=None, method='mle', return_info=False)

Estimate the concentration parameter \(\rho\) of the circular triangular law on \([0,2\pi)\).

Functions:

Name Description
mle

maximize the log-likelihood. This solves the 1-D score equation \(\sum_i \frac{c_i}{4+\rho\,c_i}=0\) with \(c_i = 2\pi\,|\,\pi-x_i\,| - \pi^2\). Unique solution in \([0, 4/\pi^2)\) or at a boundary.

moments :

closed-form \(\hat\rho = \max\{0, \min\{4/\pi^2,\ \overline{\cos x}\}\}\).

Parameters:

Name Type Description Default
data array_like

Sample angles (radians). Values are wrapped to \([0, 2\pi)\) internally.

required
weights array_like

Nonnegative sample weights. Broadcastable to data. Interpreted as frequencies.

None
method (mle, moments)

Estimation method (see above).

"mle","moments"
return_info bool

If True, also return a dict with diagnostics (loglik, se, n_effective, method).

False

Returns:

Name Type Description
rho_hat float

Estimated concentration \(\hat\rho \in [0, 4/\pi^2]\).

info (dict, optional)

Returned only if return_info=True. Contains keys: {"loglik", "se", "n_effective", "method", "converged"}.

Notes

For this distribution \(\mathbb{E}[\cos \Theta]=\rho\), so the method-of-moments estimator is simply the (weighted) mean of \(\cos x\) clipped to \([0,4/\pi^2]\). The MLE solves a strictly monotone score equation, so bracketing root-finding is robust and \(O(n)\) per evaluation.

Source code in pycircstat2/distributions.py
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
def fit(self, data, *, weights=None, method="mle", return_info=False):
    r"""
    Estimate the concentration parameter $\rho$ of the circular triangular law on $[0,2\pi)$.

    Methods
    -------

    mle (default): 
        maximize the log-likelihood. This solves the 1-D score equation
        $\sum_i \frac{c_i}{4+\rho\,c_i}=0$ with $c_i = 2\pi\,|\,\pi-x_i\,| - \pi^2$.
        Unique solution in $[0, 4/\pi^2)$ or at a boundary.
    moments :
        closed-form $\hat\rho = \max\{0, \min\{4/\pi^2,\ \overline{\cos x}\}\}$.

    Parameters
    ----------
    data : array_like
        Sample angles (radians). Values are wrapped to $[0, 2\pi)$ internally.
    weights : array_like, optional
        Nonnegative sample weights. Broadcastable to `data`. Interpreted as frequencies.
    method : {"mle","moments"}, optional
        Estimation method (see above).
    return_info : bool, optional
        If True, also return a dict with diagnostics (loglik, se, n_effective, method).

    Returns
    -------
    rho_hat : float
        Estimated concentration $\hat\rho \in [0, 4/\pi^2]$.
    info : dict, optional
        Returned only if `return_info=True`. Contains keys:
        {"loglik", "se", "n_effective", "method", "converged"}.

    Notes
    -----
    For this distribution $\mathbb{E}[\cos \Theta]=\rho$, so the method-of-moments
    estimator is simply the (weighted) mean of $\cos x$ clipped to $[0,4/\pi^2]$.
    The MLE solves a strictly monotone score equation, so bracketing root-finding
    is robust and $O(n)$ per evaluation.
    """
    x = np.asarray(data, dtype=float)
    x = np.mod(x, 2*np.pi)

    if weights is None:
        w = np.ones_like(x, dtype=float)
    else:
        w = np.asarray(weights, dtype=float)
        if np.any(w < 0):
            raise ValueError("weights must be nonnegative")
        # broadcast
        w = np.broadcast_to(w, x.shape).astype(float, copy=False)

    # Effective sample size for diagnostics
    w_sum = float(np.sum(w))
    if not np.isfinite(w_sum) or w_sum <= 0:
        raise ValueError("sum of weights must be positive")
    w_norm = w / w_sum
    n_eff = w_sum**2 / np.sum(w**2)  # Kish effective n

    # Method-of-moments (always available; used as fallback/initial intuition)
    r_bar = float(np.sum(w_norm * np.cos(x)))
    rho_mom = float(np.clip(r_bar, 0.0, 4/np.pi**2))

    if method == "moments":
        rho_hat = rho_mom
        # log-likelihood at MoM (for info only)
        y = np.abs(np.pi - x)
        ll = float(np.sum(w * np.log(4 - np.pi**2 * rho_hat + 2*np.pi * rho_hat * y)) - w_sum*np.log(8*np.pi))
        # observed Fisher info for SE
        c = 2*np.pi*y - np.pi**2
        info_obs = float(np.sum(w * (c**2) / (4 + rho_hat*c)**2))
        se = (1.0 / np.sqrt(info_obs)) if info_obs > 0 else np.nan
        if return_info:
            return rho_hat, {"loglik": ll, "se": se, "n_effective": n_eff, "method": "moments", "converged": True}
        return rho_hat

    # --- MLE via monotone root of the score ---
    y = np.abs(np.pi - x)                 # in [0, π]
    c = 2*np.pi*y - np.pi**2              # in [-π^2, π^2]

    def score(rho):
        return float(np.sum(w * (c / (4.0 + rho * c))))

    # Bracket: score(ρ) is strictly decreasing on [0, ρ_max)
    rho_lo = 0.0
    rho_hi = float(4/np.pi**2) - 1e-12

    s_lo = score(rho_lo)  # = (1/4) * sum w*c
    if s_lo <= 0:         # likelihood decreasing at 0 → boundary optimum
        rho_hat = 0.0
        converged = True
    else:
        s_hi = score(rho_hi)  # tends negative if any y_i≈0
        if s_hi >= 0:
            # all mass far from π (extreme case) → boundary at ρ_max
            rho_hat = rho_hi
            converged = True
        else:
            # Unique root inside (0, ρ_max)
            rho_hat = float(brentq(score, rho_lo, rho_hi, xtol=1e-12, rtol=1e-12, maxiter=256))
            converged = True

    # Diagnostics
    ll = float(np.sum(w * np.log(4 - np.pi**2 * rho_hat + 2*np.pi * rho_hat * y)) - w_sum*np.log(8*np.pi))
    info_obs = float(np.sum(w * (c**2) / (4 + rho_hat*c)**2))
    se = (1.0 / np.sqrt(info_obs)) if info_obs > 0 else np.nan

    if return_info:
        return rho_hat, {"loglik": ll, "se": se, "n_effective": n_eff, "method": "mle", "converged": converged}
    return rho_hat

cardioid_gen

Bases: CircularContinuous

Cardioid (cosine) Distribution

cardioid

A cosine-modulated perturbation of the circular uniform law with support on [0, 2π). The mean direction mu controls location, while the mean resultant length rho (bounded by 0.5) governs concentration. Closed-form expressions are used for the PDF and CDF, and quantiles are obtained by solving F(theta; mu, rho) = q with a safeguarded Halley--Newton iteration shared by ppf and rvs.

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

ppf

Percent-point function (inverse CDF).

rvs

Random variates via inverse transform using the quantile solver.

fit

Estimate (mu, rho) via method-of-moments or maximum likelihood.

Notes

Implementation based on Section 4.3.4 of Pewsey et al. (2014).

Source code in pycircstat2/distributions.py
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
class cardioid_gen(CircularContinuous):
    r"""Cardioid (cosine) Distribution

    ![cardioid](../images/circ-mod-cardioid.png)

    A cosine-modulated perturbation of the circular uniform law with support on
    ``[0, 2π)``. The mean direction ``mu`` controls location, while the mean
    resultant length ``rho`` (bounded by 0.5) governs concentration. Closed-form
    expressions are used for the PDF and CDF, and quantiles are obtained by
    solving ``F(theta; mu, rho) = q`` with a safeguarded Halley--Newton iteration
    shared by ``ppf`` and ``rvs``.

    Methods
    -------
    pdf(x, mu, rho)
        Probability density function.
    cdf(x, mu, rho)
        Cumulative distribution function.
    ppf(q, mu, rho)
        Percent-point function (inverse CDF).
    rvs(mu, rho, size=None, random_state=None)
        Random variates via inverse transform using the quantile solver.
    fit(data, *args, **kwargs)
        Estimate ``(mu, rho)`` via method-of-moments or maximum likelihood.

    Notes
    -----
    Implementation based on Section 4.3.4 of Pewsey et al. (2014).
    """

    def _argcheck(self, mu, rho):
        try:
            mu_arr, rho_arr = np.broadcast_arrays(mu, rho)
        except ValueError:
            return False
        return (
            (mu_arr >= 0.0)
            & (mu_arr <= 2.0 * np.pi)
            & (rho_arr >= 0.0)
            & (rho_arr <= 0.5)
        )

    def _pdf(self, x, mu, rho):
        return (1 + 2 * rho * np.cos(x - mu)) / 2.0 / np.pi

    def pdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Probability density function of the Cardioid distribution.

        $$
        f(\theta) = \frac{1}{2\pi} \left(1 + 2\rho \cos(\theta - \mu)\right), \space \rho \in [0, 1/2]
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Mean resultant length, 0 <= rho <= 0.5.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, rho, *args, **kwargs)

    def _cdf(self, x, mu, rho):
        return (x + 2 * rho * (np.sin(x - mu) + np.sin(mu))) / (2 * np.pi)

    def cdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Cumulative distribution function of the Cardioid distribution.

        $$
        F(\theta) = \frac{\theta + 2\rho (\sin(\mu) + \sin(\theta - \mu))}{2\pi}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Mean resultant length, 0 <= rho <= 0.5.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, rho, *args, **kwargs)

    def _solve_inverse_cdf(self, probabilities, mu_val, rho_val):
        two_pi = 2.0 * np.pi
        probs = np.asarray(probabilities, dtype=float)

        if probs.size == 0:
            return probs.astype(float)

        sin_mu = np.sin(mu_val)

        if np.isclose(rho_val, 0.0, atol=1e-15):
            result = two_pi * probs
            if result.ndim == 0:
                value = float(result)
                return two_pi if np.isclose(float(probs), 1.0, rtol=0.0, atol=1e-12) else value
            mask_one = np.isclose(probs, 1.0, rtol=0.0, atol=1e-12)
            if np.any(mask_one):
                result = result.copy()
                result[mask_one] = two_pi
            return result

        theta = mu_val + two_pi * (probs - 0.5)
        theta = np.mod(theta, two_pi)
        theta = np.asarray(theta, dtype=float)

        tol = 1e-12
        tiny = 1e-14
        use_halley = rho_val > 0.25
        max_iter = 6 if use_halley else 3

        for iteration in range(max_iter):
            delta = (
                theta + 2.0 * rho_val * (np.sin(theta - mu_val) + sin_mu)
            ) / two_pi - probs

            converged = np.abs(delta) <= tol
            if np.all(converged):
                break

            d1 = (1.0 + 2.0 * rho_val * np.cos(theta - mu_val)) / two_pi
            d2 = (-2.0 * rho_val * np.sin(theta - mu_val)) / two_pi

            step_newton = np.divide(
                delta,
                d1,
                out=np.zeros_like(delta, dtype=float),
                where=np.abs(d1) > tiny,
            )

            if iteration == 0 and use_halley:
                denom = 2.0 * d1**2 - delta * d2
                halley_valid = np.abs(denom) > tiny
                step_halley = np.divide(
                    2.0 * delta * d1,
                    denom,
                    out=np.zeros_like(delta, dtype=float),
                    where=halley_valid,
                )
                step = np.where(halley_valid, step_halley, step_newton)
            else:
                step = step_newton

            step = np.clip(step, -np.pi, np.pi)
            theta = np.where(converged, theta, theta - step)
            theta = np.mod(theta, two_pi)

        delta = (
            theta + 2.0 * rho_val * (np.sin(theta - mu_val) + sin_mu)
        ) / two_pi - probs
        remaining = np.abs(delta) > 10.0 * tol
        if np.any(remaining):
            theta_shape = theta.shape
            theta_flat = theta.reshape(-1)
            probs_flat = probs.reshape(-1)
            remaining_flat = remaining.reshape(-1)
            target = probs_flat[remaining_flat]
            low = np.zeros_like(target)
            high = np.full_like(target, two_pi)
            for _ in range(32):
                mid = 0.5 * (low + high)
                f_mid = (
                    mid + 2.0 * rho_val * (np.sin(mid - mu_val) + sin_mu)
                ) / two_pi
                mask_low = f_mid <= target
                low = np.where(mask_low, mid, low)
                high = np.where(mask_low, high, mid)
            theta_flat[remaining_flat] = 0.5 * (low + high)
            theta = theta_flat.reshape(theta_shape)

        result = np.mod(theta, two_pi)
        if result.ndim == 0:
            value = float(result)
            return two_pi if np.isclose(float(probs), 1.0, rtol=0.0, atol=1e-12) else value

        mask_one = np.isclose(probs, 1.0, rtol=0.0, atol=1e-12)
        if np.any(mask_one):
            result = result.copy()
            result[mask_one] = two_pi
        return result

    def _ppf(self, q, mu, rho):
        mu_arr = np.asarray(mu, dtype=float)
        rho_arr = np.asarray(rho, dtype=float)

        mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi))
        rho_val = float(rho_arr.reshape(-1)[0])
        if not (0.0 <= rho_val <= 0.5):
            raise ValueError("`rho` must lie in [0, 0.5].")

        q_arr = np.asarray(q, dtype=float)
        if q_arr.size == 0:
            return q_arr.astype(float)

        flat = q_arr.reshape(-1)
        result = np.full_like(flat, np.nan, dtype=float)
        valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0)
        if np.any(valid):
            solved = np.asarray(
                self._solve_inverse_cdf(flat[valid], mu_val, rho_val),
                dtype=float,
            ).reshape(-1)
            result[valid] = solved

        result = result.reshape(q_arr.shape)
        if q_arr.ndim == 0:
            return float(result)
        return result

    def ppf(self, q, mu, rho, *args, **kwargs):
        r"""
        Percent-point function (inverse CDF) of the Cardioid distribution.

        The quantile $\theta$ solves

        $$
        F(\theta) = \frac{\theta + 2\rho\bigl(\sin\mu + \sin(\theta - \mu)\bigr)}{2\pi} = q,
        $$

        on the support $[0, 2\pi]$.  The implementation applies a
        Halley--Newton iteration with adaptive clipping and a final bisection
        safeguard, ensuring robustness for large $\rho$ and quantiles
        close to the boundary.  The same solver powers ``rvs``, so sampled
        variates and tabulated quantiles are numerically consistent.

        Parameters
        ----------
        q : array_like
            Quantiles to evaluate; finite values in ``[0, 1]`` are supported.
        mu : float
            Mean direction, ``0 <= mu <= 2*pi``.
        rho : float
            Mean resultant length, ``0 <= rho <= 0.5``.

        Returns
        -------
        ppf_values : array_like
            Angles satisfying $F(\theta)=q$. Inputs outside ``[0, 1]`` are
            returned as ``nan``.
        """
        return super().ppf(q, mu, rho, *args, **kwargs)

    def _rvs(self, mu, rho, size=None, random_state=None):
        rng = self._init_rng(random_state)

        mu_arr = np.asarray(mu, dtype=float)
        rho_arr = np.asarray(rho, dtype=float)
        if mu_arr.size != 1 or rho_arr.size != 1:
            raise ValueError("cardioid parameters must be scalar-valued.")

        mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi))
        rho_val = float(rho_arr.reshape(-1)[0])
        if not (0.0 <= rho_val <= 0.5):
            raise ValueError("`rho` must lie in [0, 0.5].")

        two_pi = 2.0 * np.pi

        if np.isclose(rho_val, 0.0, atol=1e-15):
            samples = rng.uniform(0.0, two_pi, size=size)
            return float(samples) if np.isscalar(samples) else samples

        u = rng.uniform(0.0, 1.0, size=size)
        samples = self._solve_inverse_cdf(u, mu_val, rho_val)
        return float(samples) if np.isscalar(samples) else np.asarray(samples, dtype=float)


    def rvs(self, mu=None, rho=None, size=None, random_state=None):
        r"""
        Draw random variates from the Cardioid distribution.

        Each sample is obtained by inverse-transform sampling.  For a uniform
        draw $U \sim \mathcal{U}(0, 1)$, the angle $\Theta$
        satisfies

        $$
        \frac{\Theta + 2\rho\bigl(\sin\mu + \sin(\Theta - \mu)\bigr)}{2\pi} = U,
        $$

        and is computed with the safeguarded Halley--Newton solver described in
        ``ppf``.  When $\rho = 0$, the distribution degenerates to the
        circular uniform law and samples are drawn directly from ``[0, 2π)``.

        Parameters
        ----------
        mu : float, optional
            Mean direction, ``0 <= mu <= 2*pi``. Supply explicitly or by
            freezing the distribution.
        rho : float, optional
            Mean resultant length, ``0 <= rho <= 0.5``. Supply explicitly or by
            freezing the distribution.
        size : int or tuple of ints, optional
            Number of samples to draw. ``None`` (default) returns a scalar.
        random_state : np.random.Generator, np.random.RandomState, or None, optional
            Random number generator to use.

        Returns
        -------
        samples : ndarray or float
            Random variates on ``[0, 2π)``.
        """
        mu_val = getattr(self, "mu", None) if mu is None else mu
        rho_val = getattr(self, "rho", None) if rho is None else rho

        if mu_val is None or rho_val is None:
            raise ValueError("Both 'mu' and 'rho' must be provided.")

        return self._rvs(mu_val, rho_val, size=size, random_state=random_state)

    def fit(
        self,
        data,
        *,
        weights=None,
        method="mle",
        return_info=False,
        optimizer="L-BFGS-B",
        **kwargs,
    ):
        """
        Estimate ``mu`` and ``rho`` for the cardioid distribution.

        Parameters
        ----------
        data : array_like
            Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally.
        weights : array_like, optional
            Non-negative weights/frequencies broadcastable to ``data``.
        method : {\"mle\", \"moments\"}, optional
            Estimation strategy. ``"moments"`` uses the first trigonometric
            moment, ``"mle"`` (default) maximises the weighted log-likelihood.
        return_info : bool, optional
            If True, also return a diagnostic dictionary.
        optimizer : str, optional
            Optimiser passed to ``scipy.optimize.minimize`` when
            ``method="mle"``.
        **kwargs :
            Additional keyword arguments forwarded to the optimiser.
        """
        kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
        x = self._wrap_angles(np.asarray(data, dtype=float))
        if x.size == 0:
            raise ValueError("`data` must contain at least one observation.")

        if weights is None:
            w = np.ones_like(x, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            if np.any(w < 0):
                raise ValueError("`weights` must be non-negative.")
            w = np.broadcast_to(w, x.shape).astype(float, copy=False)

        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0:
            raise ValueError("Sum of weights must be positive.")
        n_eff = w_sum**2 / np.sum(w**2)

        mu_mom, r_mom = circ_mean_and_r(alpha=x, w=w)
        if not np.isfinite(mu_mom):
            mu_mom = float(0.0)
        mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
        rho_mom = float(np.clip(r_mom, 0.0, 0.5))

        def _nll(params):
            mu_param, rho_param = params
            if not (0.0 <= rho_param <= 0.5):
                return np.inf
            cos_term = np.cos(x - mu_param)
            denom = 1.0 + 2.0 * rho_param * cos_term
            if np.any(denom <= 0.0):
                return np.inf
            log_terms = np.log(denom)
            value = -np.sum(w * log_terms) + w_sum * np.log(2.0 * np.pi)
            return float(value)

        def _grad(params):
            mu_param, rho_param = params
            cos_term = np.cos(x - mu_param)
            denom = 1.0 + 2.0 * rho_param * cos_term
            mask_bad = denom <= 0.0
            if np.any(mask_bad):
                return np.array([0.0, 0.0], dtype=float)
            sin_term = np.sin(x - mu_param)
            inv = w / denom
            g_mu = -2.0 * rho_param * np.sum(inv * sin_term)
            g_rho = -2.0 * np.sum(inv * cos_term)
            return np.array([g_mu, g_rho], dtype=float)

        method = method.lower()
        if method not in {"mle", "moments"}:
            raise ValueError("`method` must be either 'mle' or 'moments'.")

        if method == "moments":
            mu_hat = self._wrap_direction(mu_mom)
            rho_hat = rho_mom
            info = {
                "method": "moments",
                "loglik": float(-_nll((mu_hat, rho_hat))),
                "n_effective": float(n_eff),
                "converged": True,
            }
        else:
            if rho_mom <= 1e-12:
                mu_hat = self._wrap_direction(mu_mom)
                rho_hat = 0.0
                info = {
                    "method": "mle",
                    "loglik": float(-_nll((mu_hat, rho_hat))),
                    "n_effective": float(n_eff),
                    "converged": True,
                    "nit": 0,
                    "message": "Degenerate start (rho≈0); returning boundary solution.",
                }
            else:
                init = np.array([mu_mom, rho_mom], dtype=float)
                bounds = [(0.0, 2.0 * np.pi), (0.0, 0.5)]
                result = minimize(
                    _nll,
                    init,
                    method=optimizer,
                    jac=_grad,
                    bounds=bounds,
                    **kwargs,
                )
                if not result.success:
                    raise RuntimeError(
                        f"cardioid.fit(method='mle') failed: {result.message}"
                    )
                mu_hat = self._wrap_direction(float(result.x[0]))
                rho_hat = float(np.clip(result.x[1], 0.0, 0.5))
                info = {
                    "method": "mle",
                    "loglik": float(-result.fun),
                    "n_effective": float(n_eff),
                    "converged": bool(result.success),
                    "nit": result.nit,
                    "grad_norm": float(np.linalg.norm(result.jac))
                    if getattr(result, "jac", None) is not None
                    else np.nan,
                    "optimizer": optimizer,
                }

        estimates = (mu_hat, rho_hat)
        if return_info:
            return estimates, info
        return estimates

pdf(x, mu, rho, *args, **kwargs)

Probability density function of the Cardioid distribution.

\[ f(\theta) = \frac{1}{2\pi} \left(1 + 2\rho \cos(\theta - \mu)\right), \space \rho \in [0, 1/2] \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Mean resultant length, 0 <= rho <= 0.5.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
def pdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Probability density function of the Cardioid distribution.

    $$
    f(\theta) = \frac{1}{2\pi} \left(1 + 2\rho \cos(\theta - \mu)\right), \space \rho \in [0, 1/2]
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Mean resultant length, 0 <= rho <= 0.5.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, rho, *args, **kwargs)

cdf(x, mu, rho, *args, **kwargs)

Cumulative distribution function of the Cardioid distribution.

\[ F(\theta) = \frac{\theta + 2\rho (\sin(\mu) + \sin(\theta - \mu))}{2\pi} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Mean resultant length, 0 <= rho <= 0.5.

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
def cdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Cumulative distribution function of the Cardioid distribution.

    $$
    F(\theta) = \frac{\theta + 2\rho (\sin(\mu) + \sin(\theta - \mu))}{2\pi}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Mean resultant length, 0 <= rho <= 0.5.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, rho, *args, **kwargs)

ppf(q, mu, rho, *args, **kwargs)

Percent-point function (inverse CDF) of the Cardioid distribution.

The quantile \(\theta\) solves

\[ F(\theta) = \frac{\theta + 2\rho\bigl(\sin\mu + \sin(\theta - \mu)\bigr)}{2\pi} = q, \]

on the support \([0, 2\pi]\). The implementation applies a Halley--Newton iteration with adaptive clipping and a final bisection safeguard, ensuring robustness for large \(\rho\) and quantiles close to the boundary. The same solver powers rvs, so sampled variates and tabulated quantiles are numerically consistent.

Parameters:

Name Type Description Default
q array_like

Quantiles to evaluate; finite values in [0, 1] are supported.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Mean resultant length, 0 <= rho <= 0.5.

required

Returns:

Name Type Description
ppf_values array_like

Angles satisfying \(F(\theta)=q\). Inputs outside [0, 1] are returned as nan.

Source code in pycircstat2/distributions.py
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
def ppf(self, q, mu, rho, *args, **kwargs):
    r"""
    Percent-point function (inverse CDF) of the Cardioid distribution.

    The quantile $\theta$ solves

    $$
    F(\theta) = \frac{\theta + 2\rho\bigl(\sin\mu + \sin(\theta - \mu)\bigr)}{2\pi} = q,
    $$

    on the support $[0, 2\pi]$.  The implementation applies a
    Halley--Newton iteration with adaptive clipping and a final bisection
    safeguard, ensuring robustness for large $\rho$ and quantiles
    close to the boundary.  The same solver powers ``rvs``, so sampled
    variates and tabulated quantiles are numerically consistent.

    Parameters
    ----------
    q : array_like
        Quantiles to evaluate; finite values in ``[0, 1]`` are supported.
    mu : float
        Mean direction, ``0 <= mu <= 2*pi``.
    rho : float
        Mean resultant length, ``0 <= rho <= 0.5``.

    Returns
    -------
    ppf_values : array_like
        Angles satisfying $F(\theta)=q$. Inputs outside ``[0, 1]`` are
        returned as ``nan``.
    """
    return super().ppf(q, mu, rho, *args, **kwargs)

rvs(mu=None, rho=None, size=None, random_state=None)

Draw random variates from the Cardioid distribution.

Each sample is obtained by inverse-transform sampling. For a uniform draw \(U \sim \mathcal{U}(0, 1)\), the angle \(\Theta\) satisfies

\[ \frac{\Theta + 2\rho\bigl(\sin\mu + \sin(\Theta - \mu)\bigr)}{2\pi} = U, \]

and is computed with the safeguarded Halley--Newton solver described in ppf. When \(\rho = 0\), the distribution degenerates to the circular uniform law and samples are drawn directly from [0, 2π).

Parameters:

Name Type Description Default
mu float

Mean direction, 0 <= mu <= 2*pi. Supply explicitly or by freezing the distribution.

None
rho float

Mean resultant length, 0 <= rho <= 0.5. Supply explicitly or by freezing the distribution.

None
size int or tuple of ints

Number of samples to draw. None (default) returns a scalar.

None
random_state np.random.Generator, np.random.RandomState, or None

Random number generator to use.

None

Returns:

Name Type Description
samples ndarray or float

Random variates on [0, 2π).

Source code in pycircstat2/distributions.py
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
def rvs(self, mu=None, rho=None, size=None, random_state=None):
    r"""
    Draw random variates from the Cardioid distribution.

    Each sample is obtained by inverse-transform sampling.  For a uniform
    draw $U \sim \mathcal{U}(0, 1)$, the angle $\Theta$
    satisfies

    $$
    \frac{\Theta + 2\rho\bigl(\sin\mu + \sin(\Theta - \mu)\bigr)}{2\pi} = U,
    $$

    and is computed with the safeguarded Halley--Newton solver described in
    ``ppf``.  When $\rho = 0$, the distribution degenerates to the
    circular uniform law and samples are drawn directly from ``[0, 2π)``.

    Parameters
    ----------
    mu : float, optional
        Mean direction, ``0 <= mu <= 2*pi``. Supply explicitly or by
        freezing the distribution.
    rho : float, optional
        Mean resultant length, ``0 <= rho <= 0.5``. Supply explicitly or by
        freezing the distribution.
    size : int or tuple of ints, optional
        Number of samples to draw. ``None`` (default) returns a scalar.
    random_state : np.random.Generator, np.random.RandomState, or None, optional
        Random number generator to use.

    Returns
    -------
    samples : ndarray or float
        Random variates on ``[0, 2π)``.
    """
    mu_val = getattr(self, "mu", None) if mu is None else mu
    rho_val = getattr(self, "rho", None) if rho is None else rho

    if mu_val is None or rho_val is None:
        raise ValueError("Both 'mu' and 'rho' must be provided.")

    return self._rvs(mu_val, rho_val, size=size, random_state=random_state)

fit(data, *, weights=None, method='mle', return_info=False, optimizer='L-BFGS-B', **kwargs)

Estimate mu and rho for the cardioid distribution.

Parameters:

Name Type Description Default
data array_like

Sample angles (radians). Values are wrapped to [0, 2π) internally.

required
weights array_like

Non-negative weights/frequencies broadcastable to data.

None
method (mle, moments)

Estimation strategy. "moments" uses the first trigonometric moment, "mle" (default) maximises the weighted log-likelihood.

"mle"
return_info bool

If True, also return a diagnostic dictionary.

False
optimizer str

Optimiser passed to scipy.optimize.minimize when method="mle".

'L-BFGS-B'
**kwargs

Additional keyword arguments forwarded to the optimiser.

{}
Source code in pycircstat2/distributions.py
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
def fit(
    self,
    data,
    *,
    weights=None,
    method="mle",
    return_info=False,
    optimizer="L-BFGS-B",
    **kwargs,
):
    """
    Estimate ``mu`` and ``rho`` for the cardioid distribution.

    Parameters
    ----------
    data : array_like
        Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally.
    weights : array_like, optional
        Non-negative weights/frequencies broadcastable to ``data``.
    method : {\"mle\", \"moments\"}, optional
        Estimation strategy. ``"moments"`` uses the first trigonometric
        moment, ``"mle"`` (default) maximises the weighted log-likelihood.
    return_info : bool, optional
        If True, also return a diagnostic dictionary.
    optimizer : str, optional
        Optimiser passed to ``scipy.optimize.minimize`` when
        ``method="mle"``.
    **kwargs :
        Additional keyword arguments forwarded to the optimiser.
    """
    kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
    x = self._wrap_angles(np.asarray(data, dtype=float))
    if x.size == 0:
        raise ValueError("`data` must contain at least one observation.")

    if weights is None:
        w = np.ones_like(x, dtype=float)
    else:
        w = np.asarray(weights, dtype=float)
        if np.any(w < 0):
            raise ValueError("`weights` must be non-negative.")
        w = np.broadcast_to(w, x.shape).astype(float, copy=False)

    w_sum = float(np.sum(w))
    if not np.isfinite(w_sum) or w_sum <= 0:
        raise ValueError("Sum of weights must be positive.")
    n_eff = w_sum**2 / np.sum(w**2)

    mu_mom, r_mom = circ_mean_and_r(alpha=x, w=w)
    if not np.isfinite(mu_mom):
        mu_mom = float(0.0)
    mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
    rho_mom = float(np.clip(r_mom, 0.0, 0.5))

    def _nll(params):
        mu_param, rho_param = params
        if not (0.0 <= rho_param <= 0.5):
            return np.inf
        cos_term = np.cos(x - mu_param)
        denom = 1.0 + 2.0 * rho_param * cos_term
        if np.any(denom <= 0.0):
            return np.inf
        log_terms = np.log(denom)
        value = -np.sum(w * log_terms) + w_sum * np.log(2.0 * np.pi)
        return float(value)

    def _grad(params):
        mu_param, rho_param = params
        cos_term = np.cos(x - mu_param)
        denom = 1.0 + 2.0 * rho_param * cos_term
        mask_bad = denom <= 0.0
        if np.any(mask_bad):
            return np.array([0.0, 0.0], dtype=float)
        sin_term = np.sin(x - mu_param)
        inv = w / denom
        g_mu = -2.0 * rho_param * np.sum(inv * sin_term)
        g_rho = -2.0 * np.sum(inv * cos_term)
        return np.array([g_mu, g_rho], dtype=float)

    method = method.lower()
    if method not in {"mle", "moments"}:
        raise ValueError("`method` must be either 'mle' or 'moments'.")

    if method == "moments":
        mu_hat = self._wrap_direction(mu_mom)
        rho_hat = rho_mom
        info = {
            "method": "moments",
            "loglik": float(-_nll((mu_hat, rho_hat))),
            "n_effective": float(n_eff),
            "converged": True,
        }
    else:
        if rho_mom <= 1e-12:
            mu_hat = self._wrap_direction(mu_mom)
            rho_hat = 0.0
            info = {
                "method": "mle",
                "loglik": float(-_nll((mu_hat, rho_hat))),
                "n_effective": float(n_eff),
                "converged": True,
                "nit": 0,
                "message": "Degenerate start (rho≈0); returning boundary solution.",
            }
        else:
            init = np.array([mu_mom, rho_mom], dtype=float)
            bounds = [(0.0, 2.0 * np.pi), (0.0, 0.5)]
            result = minimize(
                _nll,
                init,
                method=optimizer,
                jac=_grad,
                bounds=bounds,
                **kwargs,
            )
            if not result.success:
                raise RuntimeError(
                    f"cardioid.fit(method='mle') failed: {result.message}"
                )
            mu_hat = self._wrap_direction(float(result.x[0]))
            rho_hat = float(np.clip(result.x[1], 0.0, 0.5))
            info = {
                "method": "mle",
                "loglik": float(-result.fun),
                "n_effective": float(n_eff),
                "converged": bool(result.success),
                "nit": result.nit,
                "grad_norm": float(np.linalg.norm(result.jac))
                if getattr(result, "jac", None) is not None
                else np.nan,
                "optimizer": optimizer,
            }

    estimates = (mu_hat, rho_hat)
    if return_info:
        return estimates, info
    return estimates

cartwright_gen

Bases: CircularContinuous

Cartwright's Power-of-Cosine Distribution

cartwright

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

ppf

Percent-point function obtained by inverting the regularised incomplete beta.

rvs

Random variates via a Beta-to-angle transform consistent with the quantile.

fit

Estimate (mu, zeta) using moments or maximum likelihood.

Note

Implementation based on Section 4.3.5 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
class cartwright_gen(CircularContinuous):
    """Cartwright's Power-of-Cosine Distribution

    ![cartwright](../images/circ-mod-cartwright.png)


    Methods
    -------
    pdf(x, mu, zeta)
        Probability density function.

    cdf(x, mu, zeta)
        Cumulative distribution function.

    ppf(q, mu, zeta)
        Percent-point function obtained by inverting the regularised incomplete beta.

    rvs(mu, zeta, size=None, random_state=None)
        Random variates via a Beta-to-angle transform consistent with the quantile.

    fit(data, *args, **kwargs)
        Estimate ``(mu, zeta)`` using moments or maximum likelihood.

    Note
    ----
    Implementation based on Section 4.3.5 of Pewsey et al. (2014)
    """

    def _argcheck(self, mu, zeta):
        try:
            mu_arr, zeta_arr = np.broadcast_arrays(mu, zeta)
        except ValueError:
            return False
        return (mu_arr >= 0.0) & (mu_arr <= 2.0 * np.pi) & (zeta_arr > 0.0)

    @staticmethod
    def _moment_r(zeta):
        z = np.asarray(zeta, dtype=float)
        if np.any(z <= 0):
            raise ValueError("`zeta` must be positive.")
        inv = 1.0 / z
        log_term = (-1.0 + 2.0 * inv) * np.log(2.0)
        log_term += np.log(2.0)
        log_term += np.log(inv**2 / (inv + 1.0))
        log_term += gammaln(inv)
        log_term += gammaln(inv + 0.5)
        log_term -= 0.5 * np.log(np.pi)
        log_term -= gammaln(1.0 + 2.0 * inv)
        result = np.exp(log_term)
        return float(result) if np.isscalar(zeta) else result

    def _pdf(self, x, mu, zeta):
        return (
            (2 ** (-1 + 1 / zeta) * (gamma(1 + 1 / zeta)) ** 2)
            * (1 + np.cos(x - mu)) ** (1 / zeta)
            / (np.pi * gamma(1 + 2 / zeta))
        )

    def pdf(self, x, mu, zeta, *args, **kwargs):
        r"""
        Probability density function of the Cartwright distribution.

        $$
        f(\theta) = \frac{2^{- 1+1/\zeta} \Gamma^2(1 + 1/\zeta)}{\pi \Gamma(1 + 2/\zeta)} (1 + \cos(\theta - \mu))^{1/\zeta}
        $$

        , where $\Gamma$ is the gamma function.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        zeta : float
            Shape parameter, zeta > 0.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """

        return super().pdf(x, mu, zeta, *args, **kwargs)

    @staticmethod
    def _cartwright_cumulative(phi, a, b, half_norm):
        phi_arr = np.asarray(phi, dtype=float)
        scalar_input = np.isscalar(phi_arr)
        phi_vec = np.atleast_1d(phi_arr)
        two_pi = 2.0 * np.pi
        result = np.empty_like(phi_vec, dtype=float)

        mask_lower = phi_vec <= np.pi
        if np.any(mask_lower):
            s_small = np.sin(0.5 * phi_vec[mask_lower]) ** 2
            val = betainc(a, b, np.clip(s_small, 0.0, 1.0))
            result[mask_lower] = half_norm * val

        if np.any(~mask_lower):
            phi_ref = two_pi - phi_vec[~mask_lower]
            s_large = np.sin(0.5 * phi_ref) ** 2
            val = betainc(a, b, np.clip(s_large, 0.0, 1.0))
            result[~mask_lower] = 1.0 - half_norm * val

        if scalar_input:
            return float(result[0])
        return result.reshape(phi_arr.shape)

    def _cdf(self, x, mu, zeta):
        wrapped = self._wrap_angles(x)
        arr = np.asarray(wrapped, dtype=float)
        flat = arr.reshape(-1)

        if flat.size == 0:
            return arr.astype(float)

        mu_arr = np.asarray(mu, dtype=float)
        zeta_arr = np.asarray(zeta, dtype=float)
        if mu_arr.size != 1 or zeta_arr.size != 1:
            raise ValueError("cartwright parameters must be scalar-valued.")

        mu_val = float(mu_arr.reshape(-1)[0])
        zeta_val = float(zeta_arr.reshape(-1)[0])
        if zeta_val <= 0.0:
            raise ValueError("`zeta` must be positive.")

        two_pi = 2.0 * np.pi
        a = 0.5
        b = 1.0 / zeta_val + 0.5
        const = (
            2.0 ** (-1.0 + 1.0 / zeta_val)
            * gamma(1.0 + 1.0 / zeta_val) ** 2
            / (np.pi * gamma(1.0 + 2.0 / zeta_val))
        )
        beta_term = beta_fn(a, b)
        half_norm = const * (2.0 ** (1.0 / zeta_val)) * beta_term  # equals 0.5
        half_norm = float(np.clip(half_norm, np.finfo(float).tiny, None))

        phi_start = (-mu_val) % two_pi
        phi_end = (flat - mu_val) % two_pi

        H_start = self._cartwright_cumulative(np.array([phi_start]), a, b, half_norm)[0]
        H_end = self._cartwright_cumulative(phi_end, a, b, half_norm)

        cdf = np.where(
            phi_end >= phi_start,
            np.clip(H_end - H_start, 0.0, 1.0),
            1.0 - np.clip(H_start - H_end, 0.0, 1.0),
        )
        negative = cdf < 0.0
        if np.any(negative):
            cdf = np.where(negative, cdf + 1.0, cdf)
        cdf = np.clip(cdf, 0.0, 1.0)

        if arr.ndim == 0:
            value = float(cdf[0])
            return 1.0 if np.isclose(float(wrapped), 2.0 * np.pi) else value

        result = cdf.reshape(arr.shape)
        result[np.isclose(arr, 2.0 * np.pi)] = 1.0
        return result

    def cdf(self, x, mu, zeta, *args, **kwargs):
        r"""
        Cumulative distribution function of the Cartwright distribution.

        The CDF is evaluated analytically via a beta-function series,
        exploiting the symmetry around the mean direction.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        zeta : float
            Shape parameter, zeta > 0.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, zeta, *args, **kwargs)

    def _ppf(self, q, mu, zeta):
        mu_arr = np.asarray(mu, dtype=float)
        zeta_arr = np.asarray(zeta, dtype=float)

        mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi))
        zeta_val = float(zeta_arr.reshape(-1)[0])
        if zeta_val <= 0.0:
            raise ValueError("`zeta` must be positive.")

        q_arr = np.asarray(q, dtype=float)
        if q_arr.size == 0:
            return q_arr.astype(float)

        two_pi = 2.0 * np.pi
        a = 0.5
        b = 1.0 / zeta_val + 0.5
        const = (
            2.0 ** (-1.0 + 1.0 / zeta_val)
            * gamma(1.0 + 1.0 / zeta_val) ** 2
            / (np.pi * gamma(1.0 + 2.0 / zeta_val))
        )
        half_norm = const * (2.0 ** (1.0 / zeta_val)) * beta_fn(a, b)
        half_norm = float(np.clip(half_norm, np.finfo(float).tiny, None))

        phi_start = (-mu_val) % two_pi
        H_start = self._cartwright_cumulative(np.array([phi_start]), a, b, half_norm)[0]

        flat = q_arr.reshape(-1)
        result = np.full_like(flat, np.nan, dtype=float)

        valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0)
        if np.any(valid):
            q_valid = flat[valid]

            # Handle exact boundary quantiles explicitly
            close_zero = np.isclose(q_valid, 0.0, rtol=0.0, atol=1e-12)
            close_one = np.isclose(q_valid, 1.0, rtol=0.0, atol=1e-12)

            s = (H_start + q_valid) % 1.0

            phi = np.empty_like(q_valid)
            mask_lower = s <= 0.5

            if np.any(mask_lower):
                u = np.clip(s[mask_lower] / half_norm, 0.0, 1.0)
                t = betaincinv(a, b, np.clip(u, 0.0, 1.0))
                t = np.clip(t, 0.0, 1.0)
                phi[mask_lower] = 2.0 * np.arcsin(np.sqrt(t))

            if np.any(~mask_lower):
                s_upper = s[~mask_lower]
                u = np.clip((1.0 - s_upper) / half_norm, 0.0, 1.0)
                t = betaincinv(a, b, np.clip(u, 0.0, 1.0))
                t = np.clip(t, 0.0, 1.0)
                phi[~mask_lower] = two_pi - 2.0 * np.arcsin(np.sqrt(t))

            theta = (mu_val + phi) % two_pi

            if np.any(close_zero):
                theta[close_zero] = float(np.mod(mu_val + phi_start, two_pi))
            if np.any(close_one):
                theta[close_one] = two_pi

            result[valid] = theta

        result = result.reshape(q_arr.shape)
        if q_arr.ndim == 0:
            return float(result)
        return result

    def ppf(self, q, mu, zeta, *args, **kwargs):
        r"""
        Percent-point function (inverse CDF) of the Cartwright distribution.

        The quantile inversion exploits the beta integral governing the CDF.
        With
        $$
        t = \sin^2\!\left(\tfrac{1}{2}\phi\right), \qquad
        a = \tfrac{1}{2}, \qquad b = \tfrac{1}{\zeta} + \tfrac{1}{2},
        $$
        the cumulative distribution reduces to
        $$
        H(\phi) =
        \begin{cases}
        \tfrac{1}{2} I_t(a, b), & 0 \le \phi \le \pi, \\[6pt]
        1 - \tfrac{1}{2} I_t(a, b), & \pi < \phi < 2\pi,
        \end{cases}
        $$
        where $I_t$ is the regularised incomplete beta function. The inverse
        quantile solves $H(\phi) = s$ via the inverse regularised incomplete
        beta, ``betaincinv``, yielding the exact $O(1)$ mapping used here and in
        ``rvs``.

        Parameters
        ----------
        q : array_like
            Quantiles to evaluate (0 <= q <= 1).
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        zeta : float
            Shape parameter, zeta > 0.

        Returns
        -------
        ppf_values : array_like
            Angles corresponding to the given quantiles.
        """
        return super().ppf(q, mu, zeta, *args, **kwargs)

    def _rvs(self, mu, zeta, size=None, random_state=None):
        rng = self._init_rng(random_state)

        mu_arr = np.asarray(mu, dtype=float)
        zeta_arr = np.asarray(zeta, dtype=float)
        if mu_arr.size != 1 or zeta_arr.size != 1:
            raise ValueError("cartwright parameters must be scalar-valued.")

        mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi))
        zeta_val = float(zeta_arr.reshape(-1)[0])
        if zeta_val <= 0.0:
            raise ValueError("`zeta` must be positive.")

        shape = ()
        if size is not None:
            if np.isscalar(size):
                shape = (int(size),)
            else:
                shape = tuple(int(dim) for dim in np.atleast_1d(size))

        beta_b = 1.0 / zeta_val + 0.5
        t = rng.beta(0.5, beta_b, size=shape)
        sqrt_t = np.sqrt(t)
        angles = 2.0 * np.arcsin(np.clip(sqrt_t, 0.0, 1.0))

        signs = np.where(rng.random(size=shape) < 0.5, -1.0, 1.0)
        theta = mu_val + signs * angles
        theta = np.mod(theta, 2.0 * np.pi)

        if theta.ndim == 0:
            return float(theta)
        return theta.reshape(shape)

    def rvs(self, mu=None, zeta=None, size=None, random_state=None):
        r"""
        Draw random variates from the Cartwright distribution.

        Sampling follows the same Beta-to-angle transform as the quantile
        function: draw $T \sim \mathrm{Beta}\!\left(\tfrac{1}{2},
        \tfrac{1}{\zeta} + \tfrac{1}{2}\right)$, map it via
        $\phi = 2\arcsin(\sqrt{T})$, then reflect $\phi$ with equal probability
        around $\mu$. This construction keeps ``rvs`` numerically consistent
        with ``ppf``.

        Parameters
        ----------
        mu : float, optional
            Mean direction, ``0 <= mu <= 2*pi``. Supply explicitly or by
            freezing the distribution.
        zeta : float, optional
            Shape parameter, ``zeta > 0``. Supply explicitly or by freezing the
            distribution.
        size : int or tuple of ints, optional
            Number of samples to draw. ``None`` (default) returns a scalar.
        random_state : np.random.Generator, np.random.RandomState, or None, optional
            Random number generator to use.

        Returns
        -------
        samples : ndarray or float
            Random variates on ``[0, 2π)``.
        """
        mu_val = getattr(self, "mu", None) if mu is None else mu
        zeta_val = getattr(self, "zeta", None) if zeta is None else zeta

        if mu_val is None or zeta_val is None:
            raise ValueError("Both 'mu' and 'zeta' must be provided.")

        return self._rvs(mu_val, zeta_val, size=size, random_state=random_state)

    def fit(
        self,
        data,
        *,
        weights=None,
        method="mle",
        return_info=False,
        optimizer="L-BFGS-B",
        **kwargs,
    ):
        """
        Estimate ``mu`` and ``zeta`` for the Cartwright distribution.

        Parameters
        ----------
        data : array_like
            Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally.
        weights : array_like, optional
            Non-negative weights/frequencies broadcastable to ``data``.
        method : {"mle", "moments"}, optional
            Estimation strategy. "moments" matches the first trigonometric
            moment, "mle" (default) maximises the weighted log-likelihood.
        return_info : bool, optional
            If True, also return a diagnostic dictionary.
        optimizer : str, optional
            Optimiser passed to ``scipy.optimize.minimize`` when
            ``method="mle"``.
        **kwargs :
            Additional keyword arguments forwarded to the optimiser.
        """
        kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
        x = self._wrap_angles(np.asarray(data, dtype=float))
        if x.size == 0:
            raise ValueError("`data` must contain at least one observation.")

        if weights is None:
            w = np.ones_like(x, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            if np.any(w < 0):
                raise ValueError("`weights` must be non-negative.")
            w = np.broadcast_to(w, x.shape).astype(float, copy=False)

        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0:
            raise ValueError("Sum of weights must be positive.")
        n_eff = w_sum**2 / np.sum(w**2)

        mu_mom, _ = circ_mean_and_r(alpha=x, w=w)
        if not np.isfinite(mu_mom):
            mu_mom = float(0.0)
        mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
        delta = (x - mu_mom + np.pi) % (2.0 * np.pi) - np.pi
        sin_half = np.sin(0.5 * delta)
        m_t = float(np.sum(w * sin_half**2) / w_sum)
        m_t = float(np.clip(m_t, 0.0, 0.5 - 1e-12))
        if m_t <= 1e-12:
            zeta_mom = 1e-6
        else:
            denom = max(1e-12, 0.5 - m_t)
            zeta_mom = float(np.clip(m_t / denom, 1e-6, 1e6))

        def log_c(z):
            inv = 1.0 / z
            return (
                (-1.0 + inv) * np.log(2.0)
                + 2.0 * gammaln(1.0 + inv)
                - np.log(np.pi)
                - gammaln(1.0 + 2.0 * inv)
            )

        def nll(params):
            mu_param, zeta_param = params
            if zeta_param <= 0.0:
                return np.inf
            cos_term = np.cos(x - mu_param)
            denom = np.clip(1.0 + cos_term, 1e-15, None)
            sum_log = np.sum(w * np.log(denom))
            ll = w_sum * log_c(zeta_param) + (1.0 / zeta_param) * sum_log
            return float(-ll)

        def grad(params):
            mu_param, zeta_param = params
            cos_term = np.cos(x - mu_param)
            denom = np.clip(1.0 + cos_term, 1e-15, None)
            sin_term = np.sin(x - mu_param)
            sum_log = np.sum(w * np.log(denom))
            grad_mu = -(1.0 / zeta_param) * np.sum(w * sin_term / denom)
            inv = 1.0 / zeta_param
            term = 2.0 * digamma(1.0 + 2.0 * inv) - (
                np.log(2.0) + 2.0 * digamma(1.0 + inv)
            )
            grad_zeta = (sum_log - w_sum * term) / (zeta_param**2)
            return np.array([grad_mu, grad_zeta], dtype=float)

        method = method.lower()
        if method not in {"mle", "moments"}:
            raise ValueError("`method` must be either 'mle' or 'moments'.")

        if method == "moments":
            mu_hat = self._wrap_direction(mu_mom)
            zeta_hat = zeta_mom
            info = {
                "method": "moments",
                "loglik": float(-nll((mu_hat, zeta_hat))),
                "n_effective": float(n_eff),
                "converged": True,
            }
        else:
            mu_init = mu_mom
            zeta_init = zeta_mom if np.isfinite(zeta_mom) else 10.0
            zeta_init = float(np.clip(zeta_init, 1e-3, 1e4))
            bounds = [(0.0, 2.0 * np.pi), (1e-6, 1e6)]
            result = minimize(
                nll,
                np.array([mu_init, zeta_init], dtype=float),
                method=optimizer,
                jac=grad,
                bounds=bounds,
                **kwargs,
            )
            if not result.success:
                raise RuntimeError(
                    f"cartwright.fit(method='mle') failed: {result.message}"
                )
            mu_hat = self._wrap_direction(float(result.x[0]))
            zeta_hat = float(np.clip(result.x[1], 1e-6, 1e6))
            info = {
                "method": "mle",
                "loglik": float(-result.fun),
                "n_effective": float(n_eff),
                "converged": bool(result.success),
                "nit": result.nit,
                "grad_norm": float(np.linalg.norm(result.jac))
                if getattr(result, "jac", None) is not None
                else np.nan,
                "optimizer": optimizer,
            }

        estimates = (mu_hat, zeta_hat)
        if return_info:
            return estimates, info
        return estimates

pdf(x, mu, zeta, *args, **kwargs)

Probability density function of the Cartwright distribution.

\[ f(\theta) = \frac{2^{- 1+1/\zeta} \Gamma^2(1 + 1/\zeta)}{\pi \Gamma(1 + 2/\zeta)} (1 + \cos(\theta - \mu))^{1/\zeta} \]

, where \(\Gamma\) is the gamma function.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
zeta float

Shape parameter, zeta > 0.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
def pdf(self, x, mu, zeta, *args, **kwargs):
    r"""
    Probability density function of the Cartwright distribution.

    $$
    f(\theta) = \frac{2^{- 1+1/\zeta} \Gamma^2(1 + 1/\zeta)}{\pi \Gamma(1 + 2/\zeta)} (1 + \cos(\theta - \mu))^{1/\zeta}
    $$

    , where $\Gamma$ is the gamma function.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    zeta : float
        Shape parameter, zeta > 0.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """

    return super().pdf(x, mu, zeta, *args, **kwargs)

cdf(x, mu, zeta, *args, **kwargs)

Cumulative distribution function of the Cartwright distribution.

The CDF is evaluated analytically via a beta-function series, exploiting the symmetry around the mean direction.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
zeta float

Shape parameter, zeta > 0.

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
def cdf(self, x, mu, zeta, *args, **kwargs):
    r"""
    Cumulative distribution function of the Cartwright distribution.

    The CDF is evaluated analytically via a beta-function series,
    exploiting the symmetry around the mean direction.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    zeta : float
        Shape parameter, zeta > 0.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, zeta, *args, **kwargs)

ppf(q, mu, zeta, *args, **kwargs)

Percent-point function (inverse CDF) of the Cartwright distribution.

The quantile inversion exploits the beta integral governing the CDF. With $$ t = \sin^2!\left(\tfrac{1}{2}\phi\right), \qquad a = \tfrac{1}{2}, \qquad b = \tfrac{1}{\zeta} + \tfrac{1}{2}, $$ the cumulative distribution reduces to $$ H(\phi) = \begin{cases} \tfrac{1}{2} I_t(a, b), & 0 \le \phi \le \pi, \[6pt] 1 - \tfrac{1}{2} I_t(a, b), & \pi < \phi < 2\pi, \end{cases} $$ where \(I_t\) is the regularised incomplete beta function. The inverse quantile solves \(H(\phi) = s\) via the inverse regularised incomplete beta, betaincinv, yielding the exact \(O(1)\) mapping used here and in rvs.

Parameters:

Name Type Description Default
q array_like

Quantiles to evaluate (0 <= q <= 1).

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
zeta float

Shape parameter, zeta > 0.

required

Returns:

Name Type Description
ppf_values array_like

Angles corresponding to the given quantiles.

Source code in pycircstat2/distributions.py
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
def ppf(self, q, mu, zeta, *args, **kwargs):
    r"""
    Percent-point function (inverse CDF) of the Cartwright distribution.

    The quantile inversion exploits the beta integral governing the CDF.
    With
    $$
    t = \sin^2\!\left(\tfrac{1}{2}\phi\right), \qquad
    a = \tfrac{1}{2}, \qquad b = \tfrac{1}{\zeta} + \tfrac{1}{2},
    $$
    the cumulative distribution reduces to
    $$
    H(\phi) =
    \begin{cases}
    \tfrac{1}{2} I_t(a, b), & 0 \le \phi \le \pi, \\[6pt]
    1 - \tfrac{1}{2} I_t(a, b), & \pi < \phi < 2\pi,
    \end{cases}
    $$
    where $I_t$ is the regularised incomplete beta function. The inverse
    quantile solves $H(\phi) = s$ via the inverse regularised incomplete
    beta, ``betaincinv``, yielding the exact $O(1)$ mapping used here and in
    ``rvs``.

    Parameters
    ----------
    q : array_like
        Quantiles to evaluate (0 <= q <= 1).
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    zeta : float
        Shape parameter, zeta > 0.

    Returns
    -------
    ppf_values : array_like
        Angles corresponding to the given quantiles.
    """
    return super().ppf(q, mu, zeta, *args, **kwargs)

rvs(mu=None, zeta=None, size=None, random_state=None)

Draw random variates from the Cartwright distribution.

Sampling follows the same Beta-to-angle transform as the quantile function: draw \(T \sim \mathrm{Beta}\!\left(\tfrac{1}{2}, \tfrac{1}{\zeta} + \tfrac{1}{2}\right)\), map it via \(\phi = 2\arcsin(\sqrt{T})\), then reflect \(\phi\) with equal probability around \(\mu\). This construction keeps rvs numerically consistent with ppf.

Parameters:

Name Type Description Default
mu float

Mean direction, 0 <= mu <= 2*pi. Supply explicitly or by freezing the distribution.

None
zeta float

Shape parameter, zeta > 0. Supply explicitly or by freezing the distribution.

None
size int or tuple of ints

Number of samples to draw. None (default) returns a scalar.

None
random_state np.random.Generator, np.random.RandomState, or None

Random number generator to use.

None

Returns:

Name Type Description
samples ndarray or float

Random variates on [0, 2π).

Source code in pycircstat2/distributions.py
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
def rvs(self, mu=None, zeta=None, size=None, random_state=None):
    r"""
    Draw random variates from the Cartwright distribution.

    Sampling follows the same Beta-to-angle transform as the quantile
    function: draw $T \sim \mathrm{Beta}\!\left(\tfrac{1}{2},
    \tfrac{1}{\zeta} + \tfrac{1}{2}\right)$, map it via
    $\phi = 2\arcsin(\sqrt{T})$, then reflect $\phi$ with equal probability
    around $\mu$. This construction keeps ``rvs`` numerically consistent
    with ``ppf``.

    Parameters
    ----------
    mu : float, optional
        Mean direction, ``0 <= mu <= 2*pi``. Supply explicitly or by
        freezing the distribution.
    zeta : float, optional
        Shape parameter, ``zeta > 0``. Supply explicitly or by freezing the
        distribution.
    size : int or tuple of ints, optional
        Number of samples to draw. ``None`` (default) returns a scalar.
    random_state : np.random.Generator, np.random.RandomState, or None, optional
        Random number generator to use.

    Returns
    -------
    samples : ndarray or float
        Random variates on ``[0, 2π)``.
    """
    mu_val = getattr(self, "mu", None) if mu is None else mu
    zeta_val = getattr(self, "zeta", None) if zeta is None else zeta

    if mu_val is None or zeta_val is None:
        raise ValueError("Both 'mu' and 'zeta' must be provided.")

    return self._rvs(mu_val, zeta_val, size=size, random_state=random_state)

fit(data, *, weights=None, method='mle', return_info=False, optimizer='L-BFGS-B', **kwargs)

Estimate mu and zeta for the Cartwright distribution.

Parameters:

Name Type Description Default
data array_like

Sample angles (radians). Values are wrapped to [0, 2π) internally.

required
weights array_like

Non-negative weights/frequencies broadcastable to data.

None
method (mle, moments)

Estimation strategy. "moments" matches the first trigonometric moment, "mle" (default) maximises the weighted log-likelihood.

"mle"
return_info bool

If True, also return a diagnostic dictionary.

False
optimizer str

Optimiser passed to scipy.optimize.minimize when method="mle".

'L-BFGS-B'
**kwargs

Additional keyword arguments forwarded to the optimiser.

{}
Source code in pycircstat2/distributions.py
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
def fit(
    self,
    data,
    *,
    weights=None,
    method="mle",
    return_info=False,
    optimizer="L-BFGS-B",
    **kwargs,
):
    """
    Estimate ``mu`` and ``zeta`` for the Cartwright distribution.

    Parameters
    ----------
    data : array_like
        Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally.
    weights : array_like, optional
        Non-negative weights/frequencies broadcastable to ``data``.
    method : {"mle", "moments"}, optional
        Estimation strategy. "moments" matches the first trigonometric
        moment, "mle" (default) maximises the weighted log-likelihood.
    return_info : bool, optional
        If True, also return a diagnostic dictionary.
    optimizer : str, optional
        Optimiser passed to ``scipy.optimize.minimize`` when
        ``method="mle"``.
    **kwargs :
        Additional keyword arguments forwarded to the optimiser.
    """
    kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
    x = self._wrap_angles(np.asarray(data, dtype=float))
    if x.size == 0:
        raise ValueError("`data` must contain at least one observation.")

    if weights is None:
        w = np.ones_like(x, dtype=float)
    else:
        w = np.asarray(weights, dtype=float)
        if np.any(w < 0):
            raise ValueError("`weights` must be non-negative.")
        w = np.broadcast_to(w, x.shape).astype(float, copy=False)

    w_sum = float(np.sum(w))
    if not np.isfinite(w_sum) or w_sum <= 0:
        raise ValueError("Sum of weights must be positive.")
    n_eff = w_sum**2 / np.sum(w**2)

    mu_mom, _ = circ_mean_and_r(alpha=x, w=w)
    if not np.isfinite(mu_mom):
        mu_mom = float(0.0)
    mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
    delta = (x - mu_mom + np.pi) % (2.0 * np.pi) - np.pi
    sin_half = np.sin(0.5 * delta)
    m_t = float(np.sum(w * sin_half**2) / w_sum)
    m_t = float(np.clip(m_t, 0.0, 0.5 - 1e-12))
    if m_t <= 1e-12:
        zeta_mom = 1e-6
    else:
        denom = max(1e-12, 0.5 - m_t)
        zeta_mom = float(np.clip(m_t / denom, 1e-6, 1e6))

    def log_c(z):
        inv = 1.0 / z
        return (
            (-1.0 + inv) * np.log(2.0)
            + 2.0 * gammaln(1.0 + inv)
            - np.log(np.pi)
            - gammaln(1.0 + 2.0 * inv)
        )

    def nll(params):
        mu_param, zeta_param = params
        if zeta_param <= 0.0:
            return np.inf
        cos_term = np.cos(x - mu_param)
        denom = np.clip(1.0 + cos_term, 1e-15, None)
        sum_log = np.sum(w * np.log(denom))
        ll = w_sum * log_c(zeta_param) + (1.0 / zeta_param) * sum_log
        return float(-ll)

    def grad(params):
        mu_param, zeta_param = params
        cos_term = np.cos(x - mu_param)
        denom = np.clip(1.0 + cos_term, 1e-15, None)
        sin_term = np.sin(x - mu_param)
        sum_log = np.sum(w * np.log(denom))
        grad_mu = -(1.0 / zeta_param) * np.sum(w * sin_term / denom)
        inv = 1.0 / zeta_param
        term = 2.0 * digamma(1.0 + 2.0 * inv) - (
            np.log(2.0) + 2.0 * digamma(1.0 + inv)
        )
        grad_zeta = (sum_log - w_sum * term) / (zeta_param**2)
        return np.array([grad_mu, grad_zeta], dtype=float)

    method = method.lower()
    if method not in {"mle", "moments"}:
        raise ValueError("`method` must be either 'mle' or 'moments'.")

    if method == "moments":
        mu_hat = self._wrap_direction(mu_mom)
        zeta_hat = zeta_mom
        info = {
            "method": "moments",
            "loglik": float(-nll((mu_hat, zeta_hat))),
            "n_effective": float(n_eff),
            "converged": True,
        }
    else:
        mu_init = mu_mom
        zeta_init = zeta_mom if np.isfinite(zeta_mom) else 10.0
        zeta_init = float(np.clip(zeta_init, 1e-3, 1e4))
        bounds = [(0.0, 2.0 * np.pi), (1e-6, 1e6)]
        result = minimize(
            nll,
            np.array([mu_init, zeta_init], dtype=float),
            method=optimizer,
            jac=grad,
            bounds=bounds,
            **kwargs,
        )
        if not result.success:
            raise RuntimeError(
                f"cartwright.fit(method='mle') failed: {result.message}"
            )
        mu_hat = self._wrap_direction(float(result.x[0]))
        zeta_hat = float(np.clip(result.x[1], 1e-6, 1e6))
        info = {
            "method": "mle",
            "loglik": float(-result.fun),
            "n_effective": float(n_eff),
            "converged": bool(result.success),
            "nit": result.nit,
            "grad_norm": float(np.linalg.norm(result.jac))
            if getattr(result, "jac", None) is not None
            else np.nan,
            "optimizer": optimizer,
        }

    estimates = (mu_hat, zeta_hat)
    if return_info:
        return estimates, info
    return estimates

wrapnorm_gen

Bases: CircularContinuous

Wrapped Normal Distribution

wrapnorm

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

ppf

Percent-point function (inverse CDF).

rvs

Random variates.

fit

Estimate (mu, rho) via method-of-moments or maximum likelihood.

Examples:

from pycircstat2.distributions import wrapnorm
Notes

Implementation based on Section 4.3.7 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
class wrapnorm_gen(CircularContinuous):
    """Wrapped Normal Distribution

    ![wrapnorm](../images/circ-mod-wrapnorm.png)

    Methods
    -------
    pdf(x, mu, rho)
        Probability density function.

    cdf(x, mu, rho)
        Cumulative distribution function.

    ppf(q, mu, rho)
        Percent-point function (inverse CDF).

    rvs(mu, rho, size=None, random_state=None)
        Random variates.

    fit(data, *args, **kwargs)
        Estimate ``(mu, rho)`` via method-of-moments or maximum likelihood.

    Examples
    --------
    ```
    from pycircstat2.distributions import wrapnorm
    ```

    Notes
    -----
    Implementation based on Section 4.3.7 of Pewsey et al. (2014)
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._series_window_cache = {}

    def _argcheck(self, mu, rho):
        try:
            mu_arr, rho_arr = np.broadcast_arrays(mu, rho)
        except ValueError:
            return False
        return (
            (mu_arr >= 0.0)
            & (mu_arr <= 2.0 * np.pi)
            & (rho_arr > 0.0)
            & (rho_arr < 1.0)
        )

    def _pdf(self, x, mu, rho):
        return (
            1
            + 2
            * np.sum([rho ** (p**2) * np.cos(p * (x - mu)) for p in range(1, 30)], 0)
        ) / (2 * np.pi)

    def pdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Probability density function of the Wrapped Normal distribution.

        $$
        f(\theta) = \frac{1}{2\pi} \left(1 + 2\sum_{p=1}^{\infty} \rho^{p^2} \cos(p(\theta - \mu))\right)
        $$

        , here we approximate the infinite sum by summing the first 30 terms.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho <= 1.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, rho, *args, **kwargs)

    @staticmethod
    def _wrapnorm_cdf_pdf(theta, mu_val, sigma, *, tol=1e-13, max_iter=500):
        theta_arr = np.asarray(theta, dtype=float)
        flat = theta_arr.reshape(-1)
        if flat.size == 0:
            return theta_arr.astype(float), theta_arr.astype(float)

        inv_sigma = 1.0 / sigma
        two_pi = 2.0 * np.pi

        diff = flat - mu_val
        z0 = diff * inv_sigma
        z_ref0 = (-mu_val) * inv_sigma

        cdf = ndtr(z0) - ndtr(z_ref0)
        pdf = INV_SQRT_2PI * inv_sigma * np.exp(-0.5 * z0**2)

        k = 1
        max_contrib = np.inf
        while k <= max_iter and max_contrib > tol:
            shift = two_pi * k

            z_pos = (diff + shift) * inv_sigma
            z_pos_ref = (-mu_val + shift) * inv_sigma
            delta_pos = ndtr(z_pos) - ndtr(z_pos_ref)
            pdf += INV_SQRT_2PI * inv_sigma * np.exp(-0.5 * z_pos**2)

            z_neg = (diff - shift) * inv_sigma
            z_neg_ref = (-mu_val - shift) * inv_sigma
            delta_neg = ndtr(z_neg) - ndtr(z_neg_ref)
            pdf += INV_SQRT_2PI * inv_sigma * np.exp(-0.5 * z_neg**2)

            cdf += delta_pos + delta_neg
            max_contrib = max(
                float(np.max(np.abs(delta_pos))),
                float(np.max(np.abs(delta_neg))),
            )
            if not np.isfinite(max_contrib):
                break
            k += 1

        cdf = np.clip(cdf, 0.0, 1.0)
        pdf = np.clip(pdf, 0.0, None)

        cdf = cdf.reshape(theta_arr.shape)
        pdf = pdf.reshape(theta_arr.shape)
        return cdf, pdf

    def _cdf(self, x, mu, rho):
        wrapped = self._wrap_angles(x)
        arr = np.asarray(wrapped, dtype=float)
        flat = arr.reshape(-1)

        if flat.size == 0:
            return arr.astype(float)

        mu_arr = np.asarray(mu, dtype=float)
        rho_arr = np.asarray(rho, dtype=float)
        if mu_arr.size != 1 or rho_arr.size != 1:
            raise ValueError("wrapnorm parameters must be scalar-valued.")

        mu_val = float(mu_arr.reshape(-1)[0])
        rho_val = float(rho_arr.reshape(-1)[0])
        two_pi = 2.0 * np.pi

        if rho_val <= 1e-12:
            uniform = flat / two_pi
            if arr.ndim == 0:
                value = float(uniform[0])
                return 1.0 if np.isclose(float(wrapped), two_pi) else value
            result = uniform.reshape(arr.shape)
            result[np.isclose(arr, two_pi)] = 1.0
            return result

        rho_clipped = np.clip(rho_val, np.finfo(float).tiny, 1.0 - 1e-15)
        sigma = float(np.sqrt(-2.0 * np.log(rho_clipped)))

        cdf_flat, _ = self._wrapnorm_cdf_pdf(flat, mu_val, sigma)
        if arr.ndim == 0:
            value = float(cdf_flat.reshape(-1)[0])
            return 1.0 if np.isclose(float(wrapped), two_pi) else value

        result = cdf_flat.reshape(arr.shape)
        result[np.isclose(arr, two_pi)] = 1.0
        return result

    def cdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Cumulative distribution function of the Wrapped Normal distribution.

        The CDF is evaluated via the wrapped normal series involving the
        standard normal distribution function.

        $$
        F(\theta) = \sum_{k=-\infty}^{\infty} \left[
            \Phi\left(\frac{\theta - \mu + 2\pi k}{\sigma}\right)
            - \Phi\left(\frac{-\mu + 2\pi k}{\sigma}\right)
        \right], \quad \sigma = \sqrt{-2\log \rho}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho <= 1.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, rho, *args, **kwargs)

    def _ppf(self, q, mu, rho):
        mu_arr = np.asarray(mu, dtype=float)
        rho_arr = np.asarray(rho, dtype=float)

        mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi))
        rho_val = float(rho_arr.reshape(-1)[0])
        two_pi = 2.0 * np.pi

        q_arr = np.asarray(q, dtype=float)
        flat = q_arr.reshape(-1)
        if flat.size == 0:
            return q_arr.astype(float)

        def _finish(arr):
            reshaped = arr.reshape(q_arr.shape)
            if q_arr.ndim == 0:
                return float(reshaped)
            return reshaped

        result = np.full_like(flat, np.nan, dtype=float)
        valid = np.isfinite(flat)

        if not np.any(valid):
            return _finish(result)

        close_zero = valid & (flat <= 0.0)
        close_one = valid & (flat >= 1.0)
        result[close_zero] = 0.0
        result[close_one] = two_pi

        interior = valid & ~(close_zero | close_one)
        if not np.any(interior):
            return _finish(result)

        flat_interior = flat[interior]

        if rho_val <= 1e-12:
            result[interior] = two_pi * flat_interior
            return _finish(result)

        rho_clipped = np.clip(rho_val, np.finfo(float).tiny, 1.0 - 1e-15)
        sigma = float(np.sqrt(-2.0 * np.log(rho_clipped)))

        if sigma <= 1e-12:
            result[interior] = np.mod(mu_val, two_pi)
            return _finish(result)

        q_sub = flat_interior
        theta = np.clip(two_pi * q_sub, 1e-12, two_pi - 1e-12)
        if sigma < 1.0:
            normal_guess = mu_val + sigma * ndtri(np.clip(q_sub, 1e-12, 1.0 - 1e-12))
            theta = 0.5 * theta + 0.5 * np.mod(normal_guess, two_pi)

        lower = np.zeros_like(theta)
        upper = np.full_like(theta, two_pi)
        tol = 1e-12
        max_iter = 6

        theta_curr = theta
        cdf_vals, pdf_vals = self._wrapnorm_cdf_pdf(theta_curr, mu_val, sigma)
        delta = cdf_vals - q_sub

        for _ in range(max_iter):
            lower = np.where(delta <= 0.0, theta_curr, lower)
            upper = np.where(delta > 0.0, theta_curr, upper)
            if np.max(np.abs(delta)) <= tol:
                break
            denom = np.clip(pdf_vals, 1e-15, None)
            step = np.clip(delta / denom, -np.pi, np.pi)
            theta_next = theta_curr - step
            theta_next = np.where(
                (theta_next <= lower) | (theta_next >= upper),
                0.5 * (lower + upper),
                theta_next,
            )
            theta_next = np.clip(theta_next, 0.0, two_pi)
            theta_curr = theta_next
            cdf_vals, pdf_vals = self._wrapnorm_cdf_pdf(theta_curr, mu_val, sigma)
            delta = cdf_vals - q_sub

        lower = np.where(delta <= 0.0, theta_curr, lower)
        upper = np.where(delta > 0.0, theta_curr, upper)

        mask = np.abs(delta) > tol
        if np.any(mask):
            lower_b = lower.copy()
            upper_b = upper.copy()
            theta_b = theta_curr.copy()
            for _ in range(40):
                if not np.any(mask):
                    break
                mid = 0.5 * (lower_b + upper_b)
                mid_cdf, _ = self._wrapnorm_cdf_pdf(mid, mu_val, sigma)
                delta_mid = mid_cdf - q_sub
                take_upper = (delta_mid > 0.0) & mask
                take_lower = (~take_upper) & mask
                upper_b = np.where(take_upper, mid, upper_b)
                lower_b = np.where(take_lower, mid, lower_b)
                theta_b = np.where(mask, mid, theta_b)
                mask = mask & (np.abs(delta_mid) > tol)
            theta_curr = np.where(mask, 0.5 * (lower_b + upper_b), theta_b)

        theta_curr = np.clip(theta_curr, 0.0, two_pi)
        endpoint_mask = theta_curr >= (two_pi - 1e-12)
        if np.any(endpoint_mask):
            endpoint_value = np.nextafter(two_pi, 0.0)
            theta_curr = np.where(endpoint_mask, endpoint_value, theta_curr)

        result[interior] = theta_curr
        return _finish(result)

    def ppf(self, q, mu, rho, *args, **kwargs):
        r"""
        Percent-point function (inverse CDF) of the Wrapped Normal distribution.

        The quantile is found by inverting the wrapped normal CDF using a
        safeguarded Newton iteration on $[0, 2\pi]$. At each step the algorithm
        evaluates the truncated unwrapped Gaussian series
        $$
        F(\theta)=\sum_{k=-\infty}^{\infty}
        \Bigl[\Phi\!\Bigl(\tfrac{\theta-\mu+2\pi k}{\sigma}\Bigr)
        - \Phi\!\Bigl(\tfrac{-\mu+2\pi k}{\sigma}\Bigr)\Bigr],
        \qquad
        f(\theta)=\sum_{k=-\infty}^{\infty}
        \frac{1}{\sigma}\,\varphi\!\Bigl(\tfrac{\theta-\mu+2\pi k}{\sigma}\Bigr),
        $$
        with $\sigma = \sqrt{-2\log\rho}$, using the CDF residual to update the
        bracket and the PDF as the local slope. A final bisection polish ensures
        robust convergence and keeps the quantile consistent with ``cdf`` and
        ``rvs``.

        Parameters
        ----------
        q : array_like
            Quantiles to evaluate (0 <= q <= 1).
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho < 1.

        Returns
        -------
        ppf_values : array_like
            Angles corresponding to the given quantiles.
        """
        return super().ppf(q, mu, rho, *args, **kwargs)

    def _rvs(self, mu, rho, size=None, random_state=None):
        rng = self._init_rng(random_state)

        mu_arr = np.asarray(mu, dtype=float)
        rho_arr = np.asarray(rho, dtype=float)
        if mu_arr.size != 1 or rho_arr.size != 1:
            raise ValueError("wrapnorm parameters must be scalar-valued.")

        mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi))
        rho_val = float(np.clip(rho_arr.reshape(-1)[0], np.finfo(float).tiny, 1.0 - 1e-15))

        if rho_val <= 1e-12:
            samples = rng.uniform(0.0, 2.0 * np.pi, size=size)
            return float(samples) if np.isscalar(samples) else samples

        sigma = float(np.sqrt(-2.0 * np.log(rho_val)))
        if sigma < 1e-12:
            if size is None:
                return mu_val
            if np.isscalar(size):
                return np.full((int(size),), mu_val, dtype=float)
            shape = tuple(int(dim) for dim in np.atleast_1d(size))
            return np.full(shape, mu_val, dtype=float)

        samples = rng.normal(loc=mu_val, scale=sigma, size=size)
        wrapped = np.mod(samples, 2.0 * np.pi)
        if np.isscalar(wrapped):
            return float(wrapped)
        return wrapped

    def rvs(self, mu=None, rho=None, size=None, random_state=None):
        r"""
        Draw random variates from the Wrapped Normal distribution.

        Samples are obtained by drawing from $N(\mu, \sigma^2)$ with
        $\sigma = \sqrt{-2\log\rho}$ and wrapping the result modulo $2\pi$.
        This matches the analytic mixture used in ``cdf`` and ``ppf``, keeping
        all three methods numerically consistent.

        Parameters
        ----------
        mu : float, optional
            Mean direction, ``0 <= mu <= 2*pi``. Supply explicitly or by
            freezing the distribution.
        rho : float, optional
            Shape parameter, ``0 < rho < 1``. Supply explicitly or by freezing
            the distribution.
        size : int or tuple of ints, optional
            Number of samples to draw. ``None`` (default) returns a scalar.
        random_state : np.random.Generator, np.random.RandomState, or None, optional
            Random number generator to use.

        Returns
        -------
        samples : ndarray or float
            Random variates on ``[0, 2π)``.
        """
        mu_val = getattr(self, "mu", None) if mu is None else mu
        rho_val = getattr(self, "rho", None) if rho is None else rho

        if mu_val is None or rho_val is None:
            raise ValueError("Both 'mu' and 'rho' must be provided.")

        return self._rvs(mu_val, rho_val, size=size, random_state=random_state)

    def fit(
        self,
        data,
        *,
        weights=None,
        method="mle",
        return_info=False,
        optimizer="L-BFGS-B",
        **kwargs,
    ):
        """
        Estimate ``mu`` and ``rho`` for the wrapped normal distribution.

        Parameters
        ----------
        data : array_like
            Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally.
        weights : array_like, optional
            Non-negative weights broadcastable to ``data``.
        method : {"moments", "mle"}, optional
            Estimation strategy. ``"moments"`` (aliases: "analytical") returns
            the circular mean and resultant length. ``"mle"`` (alias:
            "numerical") maximises the weighted log-likelihood via numerical
            optimisation.
        return_info : bool, optional
            If True, return a diagnostics dictionary alongside the estimates.
        optimizer : str, optional
            Optimiser passed to ``scipy.optimize.minimize`` when
            ``method="mle"``.
        **kwargs :
            Additional keyword arguments forwarded to the optimiser.
        """
        kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
        x = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
        if x.size == 0:
            raise ValueError("`data` must contain at least one observation.")

        if weights is None:
            w = np.ones_like(x, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            if np.any(w < 0):
                raise ValueError("`weights` must be non-negative.")
            w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel()

        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0:
            raise ValueError("Sum of weights must be positive.")
        n_eff = w_sum**2 / np.sum(w**2)

        mu_mom, rho_mom = circ_mean_and_r(alpha=x, w=w)
        if not np.isfinite(mu_mom):
            mu_mom = float(0.0)
        mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
        rho_mom = float(np.clip(rho_mom, 1e-9, 1.0 - 1e-9))

        def logpdf_series(mu_param, rho_param):
            rho_val = float(np.clip(rho_param, 1e-12, 1.0 - 1e-12))
            if rho_val <= 1e-8:
                return np.full_like(x, -np.log(2.0 * np.pi), dtype=float)

            sigma = float(np.sqrt(-2.0 * np.log(rho_val)))
            if sigma > 10.0:
                return np.full_like(x, -np.log(2.0 * np.pi), dtype=float)

            two_pi = 2.0 * np.pi
            cache = getattr(self, "_series_window_cache", None)
            if cache is None:
                cache = {}
                self._series_window_cache = cache

            mu_norm = float(np.mod(mu_param, two_pi))
            mu_bucket = int(round(mu_norm / two_pi * 512)) % 512
            rho_bucket = int(round(min(4095.0, -np.log1p(-rho_val) * 64.0)))
            key = (mu_bucket, rho_bucket)

            max_cap = 256
            max_k = cache.get(
                key,
                max(5, int(np.ceil(3.0 * sigma / two_pi)) + 5),
            )

            tail_tol = 1e-10
            while True:
                ks = np.arange(-max_k, max_k + 1, dtype=float)
                diff = x[:, None] - mu_param + two_pi * ks[None, :]
                exponents = -0.5 * (diff / sigma) ** 2
                max_exp = np.max(exponents, axis=1, keepdims=True)
                shifted = np.exp(exponents - max_exp)
                sum_exp = np.sum(shifted, axis=1)
                log_pdf = max_exp.squeeze(1) + np.log(sum_exp)
                log_pdf -= 0.5 * np.log(2.0 * np.pi) + np.log(sigma)

                tail_contrib = float(
                    np.max(shifted[:, (0, -1)] / np.maximum(sum_exp[:, None], 1e-300))
                )
                if tail_contrib <= tail_tol or max_k >= max_cap:
                    cache[key] = max_k
                    return log_pdf.astype(float, copy=False)

                max_k = min(max_cap, max_k + 2)
            return log_pdf

        def nll(params):
            mu_param, rho_param = params
            if not (0.0 <= rho_param < 1.0):
                return np.inf
            log_pdf = logpdf_series(mu_param, rho_param)
            return float(-np.sum(w * log_pdf))

        method_key = method.lower()
        alias = {"analytical": "moments", "numerical": "mle"}
        method_key = alias.get(method_key, method_key)

        if method_key not in {"moments", "mle"}:
            raise ValueError("`method` must be one of {'moments', 'mle', 'analytical', 'numerical'}.")

        if "algorithm" in kwargs:
            optimizer = kwargs.pop("algorithm")

        if method_key == "moments":
            mu_hat = self._wrap_direction(mu_mom)
            rho_hat = rho_mom
            info = {
                "method": "moments",
                "loglik": float(-nll((mu_hat, rho_hat))),
                "n_effective": float(n_eff),
                "converged": True,
            }
        else:
            bounds = [(0.0, 2.0 * np.pi), (1e-9, 1.0 - 1e-9)]
            init = np.array([mu_mom, rho_mom], dtype=float)
            result = minimize(
                nll,
                init,
                method=optimizer,
                bounds=bounds,
                **kwargs,
            )
            if not result.success:
                raise RuntimeError(
                    f"wrapnorm.fit(method='mle') failed: {result.message}"
                )
            mu_hat = self._wrap_direction(float(result.x[0]))
            rho_hat = float(np.clip(result.x[1], 1e-9, 1.0 - 1e-9))
            info = {
                "method": "mle",
                "loglik": float(-result.fun),
                "n_effective": float(n_eff),
                "converged": bool(result.success),
                "nit": result.nit,
                "grad_norm": np.nan,
                "optimizer": optimizer,
            }

        estimates = (mu_hat, rho_hat)
        if return_info:
            return estimates, info
        return estimates

pdf(x, mu, rho, *args, **kwargs)

Probability density function of the Wrapped Normal distribution.

\[ f(\theta) = \frac{1}{2\pi} \left(1 + 2\sum_{p=1}^{\infty} \rho^{p^2} \cos(p(\theta - \mu))\right) \]

, here we approximate the infinite sum by summing the first 30 terms.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho <= 1.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
def pdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Probability density function of the Wrapped Normal distribution.

    $$
    f(\theta) = \frac{1}{2\pi} \left(1 + 2\sum_{p=1}^{\infty} \rho^{p^2} \cos(p(\theta - \mu))\right)
    $$

    , here we approximate the infinite sum by summing the first 30 terms.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho <= 1.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, rho, *args, **kwargs)

cdf(x, mu, rho, *args, **kwargs)

Cumulative distribution function of the Wrapped Normal distribution.

The CDF is evaluated via the wrapped normal series involving the standard normal distribution function.

\[ F(\theta) = \sum_{k=-\infty}^{\infty} \left[ \Phi\left(\frac{\theta - \mu + 2\pi k}{\sigma}\right) - \Phi\left(\frac{-\mu + 2\pi k}{\sigma}\right) \right], \quad \sigma = \sqrt{-2\log \rho} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho <= 1.

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
def cdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Cumulative distribution function of the Wrapped Normal distribution.

    The CDF is evaluated via the wrapped normal series involving the
    standard normal distribution function.

    $$
    F(\theta) = \sum_{k=-\infty}^{\infty} \left[
        \Phi\left(\frac{\theta - \mu + 2\pi k}{\sigma}\right)
        - \Phi\left(\frac{-\mu + 2\pi k}{\sigma}\right)
    \right], \quad \sigma = \sqrt{-2\log \rho}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho <= 1.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, rho, *args, **kwargs)

ppf(q, mu, rho, *args, **kwargs)

Percent-point function (inverse CDF) of the Wrapped Normal distribution.

The quantile is found by inverting the wrapped normal CDF using a safeguarded Newton iteration on \([0, 2\pi]\). At each step the algorithm evaluates the truncated unwrapped Gaussian series $$ F(\theta)=\sum_{k=-\infty}^{\infty} \Bigl[\Phi!\Bigl(\tfrac{\theta-\mu+2\pi k}{\sigma}\Bigr) - \Phi!\Bigl(\tfrac{-\mu+2\pi k}{\sigma}\Bigr)\Bigr], \qquad f(\theta)=\sum_{k=-\infty}^{\infty} \frac{1}{\sigma}\,\varphi!\Bigl(\tfrac{\theta-\mu+2\pi k}{\sigma}\Bigr), $$ with \(\sigma = \sqrt{-2\log\rho}\), using the CDF residual to update the bracket and the PDF as the local slope. A final bisection polish ensures robust convergence and keeps the quantile consistent with cdf and rvs.

Parameters:

Name Type Description Default
q array_like

Quantiles to evaluate (0 <= q <= 1).

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho < 1.

required

Returns:

Name Type Description
ppf_values array_like

Angles corresponding to the given quantiles.

Source code in pycircstat2/distributions.py
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
def ppf(self, q, mu, rho, *args, **kwargs):
    r"""
    Percent-point function (inverse CDF) of the Wrapped Normal distribution.

    The quantile is found by inverting the wrapped normal CDF using a
    safeguarded Newton iteration on $[0, 2\pi]$. At each step the algorithm
    evaluates the truncated unwrapped Gaussian series
    $$
    F(\theta)=\sum_{k=-\infty}^{\infty}
    \Bigl[\Phi\!\Bigl(\tfrac{\theta-\mu+2\pi k}{\sigma}\Bigr)
    - \Phi\!\Bigl(\tfrac{-\mu+2\pi k}{\sigma}\Bigr)\Bigr],
    \qquad
    f(\theta)=\sum_{k=-\infty}^{\infty}
    \frac{1}{\sigma}\,\varphi\!\Bigl(\tfrac{\theta-\mu+2\pi k}{\sigma}\Bigr),
    $$
    with $\sigma = \sqrt{-2\log\rho}$, using the CDF residual to update the
    bracket and the PDF as the local slope. A final bisection polish ensures
    robust convergence and keeps the quantile consistent with ``cdf`` and
    ``rvs``.

    Parameters
    ----------
    q : array_like
        Quantiles to evaluate (0 <= q <= 1).
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho < 1.

    Returns
    -------
    ppf_values : array_like
        Angles corresponding to the given quantiles.
    """
    return super().ppf(q, mu, rho, *args, **kwargs)

rvs(mu=None, rho=None, size=None, random_state=None)

Draw random variates from the Wrapped Normal distribution.

Samples are obtained by drawing from \(N(\mu, \sigma^2)\) with \(\sigma = \sqrt{-2\log\rho}\) and wrapping the result modulo \(2\pi\). This matches the analytic mixture used in cdf and ppf, keeping all three methods numerically consistent.

Parameters:

Name Type Description Default
mu float

Mean direction, 0 <= mu <= 2*pi. Supply explicitly or by freezing the distribution.

None
rho float

Shape parameter, 0 < rho < 1. Supply explicitly or by freezing the distribution.

None
size int or tuple of ints

Number of samples to draw. None (default) returns a scalar.

None
random_state np.random.Generator, np.random.RandomState, or None

Random number generator to use.

None

Returns:

Name Type Description
samples ndarray or float

Random variates on [0, 2π).

Source code in pycircstat2/distributions.py
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
def rvs(self, mu=None, rho=None, size=None, random_state=None):
    r"""
    Draw random variates from the Wrapped Normal distribution.

    Samples are obtained by drawing from $N(\mu, \sigma^2)$ with
    $\sigma = \sqrt{-2\log\rho}$ and wrapping the result modulo $2\pi$.
    This matches the analytic mixture used in ``cdf`` and ``ppf``, keeping
    all three methods numerically consistent.

    Parameters
    ----------
    mu : float, optional
        Mean direction, ``0 <= mu <= 2*pi``. Supply explicitly or by
        freezing the distribution.
    rho : float, optional
        Shape parameter, ``0 < rho < 1``. Supply explicitly or by freezing
        the distribution.
    size : int or tuple of ints, optional
        Number of samples to draw. ``None`` (default) returns a scalar.
    random_state : np.random.Generator, np.random.RandomState, or None, optional
        Random number generator to use.

    Returns
    -------
    samples : ndarray or float
        Random variates on ``[0, 2π)``.
    """
    mu_val = getattr(self, "mu", None) if mu is None else mu
    rho_val = getattr(self, "rho", None) if rho is None else rho

    if mu_val is None or rho_val is None:
        raise ValueError("Both 'mu' and 'rho' must be provided.")

    return self._rvs(mu_val, rho_val, size=size, random_state=random_state)

fit(data, *, weights=None, method='mle', return_info=False, optimizer='L-BFGS-B', **kwargs)

Estimate mu and rho for the wrapped normal distribution.

Parameters:

Name Type Description Default
data array_like

Sample angles (radians). Values are wrapped to [0, 2π) internally.

required
weights array_like

Non-negative weights broadcastable to data.

None
method (moments, mle)

Estimation strategy. "moments" (aliases: "analytical") returns the circular mean and resultant length. "mle" (alias: "numerical") maximises the weighted log-likelihood via numerical optimisation.

"moments"
return_info bool

If True, return a diagnostics dictionary alongside the estimates.

False
optimizer str

Optimiser passed to scipy.optimize.minimize when method="mle".

'L-BFGS-B'
**kwargs

Additional keyword arguments forwarded to the optimiser.

{}
Source code in pycircstat2/distributions.py
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
def fit(
    self,
    data,
    *,
    weights=None,
    method="mle",
    return_info=False,
    optimizer="L-BFGS-B",
    **kwargs,
):
    """
    Estimate ``mu`` and ``rho`` for the wrapped normal distribution.

    Parameters
    ----------
    data : array_like
        Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally.
    weights : array_like, optional
        Non-negative weights broadcastable to ``data``.
    method : {"moments", "mle"}, optional
        Estimation strategy. ``"moments"`` (aliases: "analytical") returns
        the circular mean and resultant length. ``"mle"`` (alias:
        "numerical") maximises the weighted log-likelihood via numerical
        optimisation.
    return_info : bool, optional
        If True, return a diagnostics dictionary alongside the estimates.
    optimizer : str, optional
        Optimiser passed to ``scipy.optimize.minimize`` when
        ``method="mle"``.
    **kwargs :
        Additional keyword arguments forwarded to the optimiser.
    """
    kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
    x = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
    if x.size == 0:
        raise ValueError("`data` must contain at least one observation.")

    if weights is None:
        w = np.ones_like(x, dtype=float)
    else:
        w = np.asarray(weights, dtype=float)
        if np.any(w < 0):
            raise ValueError("`weights` must be non-negative.")
        w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel()

    w_sum = float(np.sum(w))
    if not np.isfinite(w_sum) or w_sum <= 0:
        raise ValueError("Sum of weights must be positive.")
    n_eff = w_sum**2 / np.sum(w**2)

    mu_mom, rho_mom = circ_mean_and_r(alpha=x, w=w)
    if not np.isfinite(mu_mom):
        mu_mom = float(0.0)
    mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
    rho_mom = float(np.clip(rho_mom, 1e-9, 1.0 - 1e-9))

    def logpdf_series(mu_param, rho_param):
        rho_val = float(np.clip(rho_param, 1e-12, 1.0 - 1e-12))
        if rho_val <= 1e-8:
            return np.full_like(x, -np.log(2.0 * np.pi), dtype=float)

        sigma = float(np.sqrt(-2.0 * np.log(rho_val)))
        if sigma > 10.0:
            return np.full_like(x, -np.log(2.0 * np.pi), dtype=float)

        two_pi = 2.0 * np.pi
        cache = getattr(self, "_series_window_cache", None)
        if cache is None:
            cache = {}
            self._series_window_cache = cache

        mu_norm = float(np.mod(mu_param, two_pi))
        mu_bucket = int(round(mu_norm / two_pi * 512)) % 512
        rho_bucket = int(round(min(4095.0, -np.log1p(-rho_val) * 64.0)))
        key = (mu_bucket, rho_bucket)

        max_cap = 256
        max_k = cache.get(
            key,
            max(5, int(np.ceil(3.0 * sigma / two_pi)) + 5),
        )

        tail_tol = 1e-10
        while True:
            ks = np.arange(-max_k, max_k + 1, dtype=float)
            diff = x[:, None] - mu_param + two_pi * ks[None, :]
            exponents = -0.5 * (diff / sigma) ** 2
            max_exp = np.max(exponents, axis=1, keepdims=True)
            shifted = np.exp(exponents - max_exp)
            sum_exp = np.sum(shifted, axis=1)
            log_pdf = max_exp.squeeze(1) + np.log(sum_exp)
            log_pdf -= 0.5 * np.log(2.0 * np.pi) + np.log(sigma)

            tail_contrib = float(
                np.max(shifted[:, (0, -1)] / np.maximum(sum_exp[:, None], 1e-300))
            )
            if tail_contrib <= tail_tol or max_k >= max_cap:
                cache[key] = max_k
                return log_pdf.astype(float, copy=False)

            max_k = min(max_cap, max_k + 2)
        return log_pdf

    def nll(params):
        mu_param, rho_param = params
        if not (0.0 <= rho_param < 1.0):
            return np.inf
        log_pdf = logpdf_series(mu_param, rho_param)
        return float(-np.sum(w * log_pdf))

    method_key = method.lower()
    alias = {"analytical": "moments", "numerical": "mle"}
    method_key = alias.get(method_key, method_key)

    if method_key not in {"moments", "mle"}:
        raise ValueError("`method` must be one of {'moments', 'mle', 'analytical', 'numerical'}.")

    if "algorithm" in kwargs:
        optimizer = kwargs.pop("algorithm")

    if method_key == "moments":
        mu_hat = self._wrap_direction(mu_mom)
        rho_hat = rho_mom
        info = {
            "method": "moments",
            "loglik": float(-nll((mu_hat, rho_hat))),
            "n_effective": float(n_eff),
            "converged": True,
        }
    else:
        bounds = [(0.0, 2.0 * np.pi), (1e-9, 1.0 - 1e-9)]
        init = np.array([mu_mom, rho_mom], dtype=float)
        result = minimize(
            nll,
            init,
            method=optimizer,
            bounds=bounds,
            **kwargs,
        )
        if not result.success:
            raise RuntimeError(
                f"wrapnorm.fit(method='mle') failed: {result.message}"
            )
        mu_hat = self._wrap_direction(float(result.x[0]))
        rho_hat = float(np.clip(result.x[1], 1e-9, 1.0 - 1e-9))
        info = {
            "method": "mle",
            "loglik": float(-result.fun),
            "n_effective": float(n_eff),
            "converged": bool(result.success),
            "nit": result.nit,
            "grad_norm": np.nan,
            "optimizer": optimizer,
        }

    estimates = (mu_hat, rho_hat)
    if return_info:
        return estimates, info
    return estimates

wrapcauchy_gen

Bases: CircularContinuous

Wrapped Cauchy Distribution.

wrapcauchy

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

ppf

Percent-point function (inverse CDF) via the Möbius mapping.

rvs

Random variates.

fit

Fit the distribution to the data and return the parameters (mu, rho).

Notes

Implementation based on Section 4.3.6 of Pewsey et al. (2014).

Source code in pycircstat2/distributions.py
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
class wrapcauchy_gen(CircularContinuous):
    """Wrapped Cauchy Distribution.

    ![wrapcauchy](../images/circ-mod-wrapcauchy.png)

    Methods
    -------
    pdf(x, mu, rho)
        Probability density function.

    cdf(x, mu, rho)
        Cumulative distribution function.

    ppf(q, mu, rho)
        Percent-point function (inverse CDF) via the Möbius mapping.

    rvs(mu, rho, size=None, random_state=None)
        Random variates.

    fit(data, method="analytical", *args, **kwargs)
        Fit the distribution to the data and return the parameters (mu, rho).

    Notes
    -----
    Implementation based on Section 4.3.6 of Pewsey et al. (2014).
    """

    def _argcheck(self, mu, rho):
        try:
            mu_arr, rho_arr = np.broadcast_arrays(mu, rho)
        except ValueError:
            return False
        return (
            (mu_arr >= 0.0)
            & (mu_arr <= 2.0 * np.pi)
            & (rho_arr >= 0.0)
            & (rho_arr < 1.0)
        )

    def _pdf(self, x, mu, rho):
        return (1 - rho**2) / (2 * np.pi * (1 + rho**2 - 2 * rho * np.cos(x - mu)))

    def pdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Probability density function of the Wrapped Cauchy distribution.

        $$
        f(\theta) = \frac{1 - \rho^2}{2\pi(1 + \rho^2 - 2\rho \cos(\theta - \mu))}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho <= 1.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, rho, *args, **kwargs)

    def _logpdf(self, x, mu, rho):
        return np.log(np.clip(self._pdf(x, mu, rho), 1e-16, None))

    def logpdf(self, x, mu, rho, *args, **kwargs):
        """
        Logarithm of the probability density function.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the log-PDF.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Mean resultant length, 0 < rho <= 1.

        Returns
        -------
        logpdf_values : array_like
            Logarithm of the probability density function evaluated at `x`.
        """
        return super().logpdf(x, mu, rho, *args, **kwargs)

    def _cdf(self, x, mu, rho):
        wrapped = self._wrap_angles(x)
        arr = np.asarray(wrapped, dtype=float)
        flat = arr.reshape(-1)

        mu_arr = np.asarray(mu, dtype=float)
        if mu_arr.size != 1:
            raise ValueError("wrapcauchy parameters must be scalar-valued.")
        mu_val = float(mu_arr.reshape(-1)[0])
        rho_arr = np.asarray(rho, dtype=float)
        if rho_arr.size != 1:
            raise ValueError("wrapcauchy parameters must be scalar-valued.")
        rho_val = float(rho_arr.reshape(-1)[0])
        rho_val = np.clip(rho_val, np.finfo(float).tiny, 1.0 - 1e-15)

        if flat.size == 0:
            return arr.astype(float)

        two_pi = 2.0 * np.pi
        A = (1.0 + rho_val) / (1.0 - rho_val)

        phi = (flat - mu_val + np.pi) % two_pi - np.pi
        base_phi = (-mu_val + np.pi) % two_pi - np.pi

        angle = np.arctan2(A * np.sin(0.5 * phi), np.cos(0.5 * phi))
        base_angle = np.arctan2(A * np.sin(0.5 * base_phi), np.cos(0.5 * base_phi))

        cdf = 0.5 + angle / np.pi
        base_val = 0.5 + base_angle / np.pi

        diff = cdf - base_val
        diff = np.where(diff < -1e-12, diff + 1.0, diff)
        diff = np.where(diff > 1.0, diff - 1.0, diff)
        cdf = np.clip(diff, 0.0, 1.0)

        if arr.ndim == 0:
            value = float(cdf[0])
            return 1.0 if np.isclose(float(wrapped), 2.0 * np.pi) else value
        reshaped = cdf.reshape(arr.shape)
        reshaped[np.isclose(arr, 2.0 * np.pi)] = 1.0
        return reshaped

    def cdf(self, x, mu, rho, *args, **kwargs):
        """
        Cumulative distribution function of the Wrapped Cauchy distribution.

        The CDF is evaluated analytically via the wrapped Cauchy series.
        Parameters
        ----------
        x : array_like
            Points at which to evaluate the CDF.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho <= 1.

        Returns
        -------
        cdf_values : array_like
            CDF evaluated at `x`.
        """
        return super().cdf(x, mu, rho, *args, **kwargs)

    @staticmethod
    def _wrapcauchy_H(phi, A):
        phi_arr = np.asarray(phi, dtype=float)
        angle = np.arctan2(A * np.sin(0.5 * phi_arr), np.cos(0.5 * phi_arr))
        H = 0.5 + angle / np.pi
        return float(H) if np.isscalar(phi) else H

    def _ppf(self, q, mu, rho):
        mu_arr = np.asarray(mu, dtype=float)
        rho_arr = np.asarray(rho, dtype=float)

        mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi))
        rho_val = float(rho_arr.reshape(-1)[0])
        if not (0.0 <= rho_val < 1.0):
            raise ValueError("`rho` must lie in [0, 1).")

        q_arr = np.asarray(q, dtype=float)
        flat = q_arr.reshape(-1)
        if flat.size == 0:
            return q_arr.astype(float)

        result = np.full_like(flat, np.nan, dtype=float)

        lower_mask = flat <= 0.0
        upper_mask = flat >= 1.0
        result[lower_mask] = 0.0
        result[upper_mask] = 2.0 * np.pi

        interior = ~(lower_mask | upper_mask)
        if not np.any(interior):
            return result.reshape(q_arr.shape)

        q_int = flat[interior]
        two_pi = 2.0 * np.pi

        if rho_val <= 1e-15:
            result[interior] = (two_pi * q_int) % two_pi
            return result.reshape(q_arr.shape)

        A = (1.0 + rho_val) / (1.0 - rho_val)
        phi0 = (-mu_val + np.pi) % two_pi - np.pi
        H_start = float(self._wrapcauchy_H(phi0, A))

        s = (H_start + q_int) % 1.0
        eps = 1e-15
        alpha = np.pi * (np.clip(s, eps, 1.0 - eps) - 0.5)
        tan_alpha = np.tan(alpha)
        phi = 2.0 * np.arctan(tan_alpha / A)
        theta = (mu_val + phi) % two_pi
        result[interior] = theta

        return result.reshape(q_arr.shape)

    def ppf(self, q, mu, rho, *args, **kwargs):
        r"""
        Percent-point function (inverse CDF) of the Wrapped Cauchy distribution.

        The quantile is obtained by inverting the Möbius form of the CDF:
        $$
        \phi = 2 \arctan\!\left(\frac{\tan\left(\pi (s-\tfrac12)\right)}{A}\right),
        \qquad A=\frac{1+\rho}{1-\rho},
        $$
        where $s = (H(\phi_0) + q) \bmod 1$ and $\phi_0$ is the anchored angle
        at $x=0$. This matches the direct normalised CDF and keeps ``ppf`` in
        sync with ``cdf`` and the Möbius sampler used by ``rvs``.
        """
        return super().ppf(q, mu, rho, *args, **kwargs)

    def _rvs(self, mu, rho, size=None, random_state=None):
        rng = self._init_rng(random_state)

        mu_arr = np.asarray(mu, dtype=float)
        rho_arr = np.asarray(rho, dtype=float)
        if mu_arr.size != 1 or rho_arr.size != 1:
            raise ValueError("wrapcauchy parameters must be scalar-valued.")

        mu_val = float(mu_arr.reshape(-1)[0])
        rho_val = float(rho_arr.reshape(-1)[0])
        two_pi = 2.0 * np.pi

        if np.isclose(rho_val, 0.0, atol=1e-15):
            return rng.uniform(0.0, two_pi, size=size)

        if np.isclose(rho_val, 1.0, atol=1e-15):
            angle = float(np.mod(mu_val, two_pi))
            if size is None:
                return angle
            return np.full(size, angle, dtype=float)

        if size is None:
            target_shape = ()
        elif np.isscalar(size):
            target_shape = (int(size),)
        else:
            target_shape = tuple(int(dim) for dim in np.atleast_1d(size))

        # Möbius transform sampler: exact and numerically stable for rho<1.
        u = rng.uniform(-np.pi, np.pi, size=target_shape)
        z = np.exp(1j * u)
        alpha = rho_val * np.exp(1j * mu_val)
        denom = 1.0 + rho_val * np.exp(-1j * mu_val) * z
        tiny = 1e-15
        mask = np.abs(denom) < tiny
        denom = np.where(mask, tiny, denom)
        w = (z + alpha) / denom
        angles = np.angle(w)
        original_shape = angles.shape

        if np.any(mask):
            # Fallback to tangent sampler for rare near-pole cases.
            count = int(np.count_nonzero(mask))
            fallback_u = rng.uniform(0.0, 1.0, size=count)
            factor = (1.0 + rho_val) / (1.0 - rho_val)
            tan_term = np.tan(np.pi * (fallback_u - 0.5))
            fallback = mu_val + 2.0 * np.arctan(factor * tan_term)
            fallback = np.mod(fallback, two_pi)
            angles_flat = angles.reshape(-1)
            mask_flat = mask.reshape(-1)
            angles_flat[mask_flat] = fallback
            angles = angles_flat.reshape(original_shape)

        theta = np.mod(angles, two_pi)
        if target_shape == ():
            return float(theta)
        return theta.reshape(target_shape)

    def rvs(self, mu=None, rho=None, size=None, random_state=None):
        """
        Draw random variates from the Wrapped Cauchy distribution.

        Parameters
        ----------
        mu : float, optional
            Mean direction, ``0 <= mu <= 2*pi``. Supply explicitly or by
            freezing the distribution.
        rho : float, optional
            Shape parameter, ``0 <= rho < 1``. Supply explicitly or by freezing
            the distribution.
        size : int or tuple of ints, optional
            Number of samples to draw. ``None`` (default) returns a scalar.
        random_state : np.random.Generator, np.random.RandomState, or None, optional
            Random number generator to use.

        Returns
        -------
        samples : ndarray or float
            Random variates on ``[0, 2π)``.
        """
        mu_val = getattr(self, "mu", None) if mu is None else mu
        rho_val = getattr(self, "rho", None) if rho is None else rho

        if mu_val is None or rho_val is None:
            raise ValueError("Both 'mu' and 'rho' must be provided.")

        return self._rvs(mu_val, rho_val, size=size, random_state=random_state)

    def fit(
        self,
        data,
        *,
        weights=None,
        method="mle",
        return_info=False,
        optimizer="L-BFGS-B",
        **kwargs,
    ):
        """
        Estimate ``mu`` and ``rho`` for the wrapped Cauchy distribution.

        Parameters
        ----------
        data : array_like
            Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally.
        weights : array_like, optional
            Non-negative weights broadcastable to ``data``.
        method : {"moments", "mle"}, optional
            Estimation strategy. ``"moments"`` (alias: "analytical") returns the
            closed-form estimates based on the first trigonometric moment.
            ``"mle"`` (alias: "numerical") maximises the weighted log-likelihood.
        return_info : bool, optional
            If True, also return a diagnostic dictionary.
        optimizer : str, optional
            Optimiser passed to ``scipy.optimize.minimize`` when
            ``method="mle"``.
        **kwargs :
            Additional keyword arguments forwarded to the optimiser.
        """
        kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
        x = self._wrap_angles(np.asarray(data, dtype=float))
        if x.size == 0:
            raise ValueError("`data` must contain at least one observation.")

        if weights is None:
            w = np.ones_like(x, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            if np.any(w < 0):
                raise ValueError("`weights` must be non-negative.")
            w = np.broadcast_to(w, x.shape).astype(float, copy=False)

        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0:
            raise ValueError("Sum of weights must be positive.")
        n_eff = w_sum**2 / np.sum(w**2)

        mu_mom, rho_mom = circ_mean_and_r(alpha=x, w=w)
        if not np.isfinite(mu_mom):
            mu_mom = float(0.0)
        mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
        rho_mom = float(np.clip(rho_mom, 0.0, 1.0 - 1e-12))

        def nll(params):
            mu_param, rho_param = params
            if not (0.0 <= rho_param < 1.0):
                return np.inf
            denom = np.clip(1.0 + rho_param**2 - 2.0 * rho_param * np.cos(x - mu_param), 1e-15, None)
            log_pdf = np.log1p(-rho_param**2) - np.log(2.0 * np.pi) - np.log(denom)
            value = -np.sum(w * log_pdf)
            return float(value)

        def grad(params):
            mu_param, rho_param = params
            denom = np.clip(1.0 + rho_param**2 - 2.0 * rho_param * np.cos(x - mu_param), 1e-15, None)
            cos_term = np.cos(x - mu_param)
            sin_term = np.sin(x - mu_param)

            inv_denom = w / denom
            g_mu = -2.0 * rho_param * np.sum(inv_denom * sin_term)
            g_rho = (
                w_sum * (2.0 * rho_param / np.clip(1.0 - rho_param**2, 1e-15, None))
                + np.sum(inv_denom * (2.0 * rho_param - 2.0 * cos_term))
            )
            return np.array([g_mu, g_rho], dtype=float)

        method_key = method.lower()
        alias = {"analytical": "moments", "numerical": "mle"}
        method_key = alias.get(method_key, method_key)

        if "algorithm" in kwargs:
            optimizer = kwargs.pop("algorithm")

        if method_key not in {"moments", "mle"}:
            raise ValueError("`method` must be one of {'moments', 'mle', 'analytical', 'numerical'}.")

        if method_key == "moments":
            mu_hat = self._wrap_direction(mu_mom)
            rho_hat = rho_mom
            info = {
                "method": "moments",
                "loglik": float(-nll((mu_hat, rho_hat))),
                "n_effective": float(n_eff),
                "converged": True,
            }
        else:
            bounds = [(0.0, 2.0 * np.pi), (1e-9, 1.0 - 1e-9)]
            init = np.array([mu_mom, max(1e-3, min(rho_mom, 1.0 - 1e-3))], dtype=float)
            result = minimize(
                nll,
                init,
                method=optimizer,
                jac=grad,
                bounds=bounds,
                **kwargs,
            )
            if not result.success:
                raise RuntimeError(f"wrapcauchy.fit(method='mle') failed: {result.message}")
            mu_hat = self._wrap_direction(float(result.x[0]))
            rho_hat = float(np.clip(result.x[1], 1e-9, 1.0 - 1e-9))
            info = {
                "method": "mle",
                "loglik": float(-result.fun),
                "n_effective": float(n_eff),
                "converged": bool(result.success),
                "nit": result.nit,
                "grad_norm": float(np.linalg.norm(result.jac))
                if getattr(result, "jac", None) is not None
                else np.nan,
                "optimizer": optimizer,
            }

        estimates = (mu_hat, rho_hat)
        if return_info:
            return estimates, info
        return estimates

pdf(x, mu, rho, *args, **kwargs)

Probability density function of the Wrapped Cauchy distribution.

\[ f(\theta) = \frac{1 - \rho^2}{2\pi(1 + \rho^2 - 2\rho \cos(\theta - \mu))} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho <= 1.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
def pdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Probability density function of the Wrapped Cauchy distribution.

    $$
    f(\theta) = \frac{1 - \rho^2}{2\pi(1 + \rho^2 - 2\rho \cos(\theta - \mu))}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho <= 1.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, rho, *args, **kwargs)

logpdf(x, mu, rho, *args, **kwargs)

Logarithm of the probability density function.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the log-PDF.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Mean resultant length, 0 < rho <= 1.

required

Returns:

Name Type Description
logpdf_values array_like

Logarithm of the probability density function evaluated at x.

Source code in pycircstat2/distributions.py
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
def logpdf(self, x, mu, rho, *args, **kwargs):
    """
    Logarithm of the probability density function.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the log-PDF.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Mean resultant length, 0 < rho <= 1.

    Returns
    -------
    logpdf_values : array_like
        Logarithm of the probability density function evaluated at `x`.
    """
    return super().logpdf(x, mu, rho, *args, **kwargs)

cdf(x, mu, rho, *args, **kwargs)

Cumulative distribution function of the Wrapped Cauchy distribution.

The CDF is evaluated analytically via the wrapped Cauchy series.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the CDF.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho <= 1.

required

Returns:

Name Type Description
cdf_values array_like

CDF evaluated at x.

Source code in pycircstat2/distributions.py
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
def cdf(self, x, mu, rho, *args, **kwargs):
    """
    Cumulative distribution function of the Wrapped Cauchy distribution.

    The CDF is evaluated analytically via the wrapped Cauchy series.
    Parameters
    ----------
    x : array_like
        Points at which to evaluate the CDF.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho <= 1.

    Returns
    -------
    cdf_values : array_like
        CDF evaluated at `x`.
    """
    return super().cdf(x, mu, rho, *args, **kwargs)

ppf(q, mu, rho, *args, **kwargs)

Percent-point function (inverse CDF) of the Wrapped Cauchy distribution.

The quantile is obtained by inverting the Möbius form of the CDF: $$ \phi = 2 \arctan!\left(\frac{\tan\left(\pi (s-\tfrac12)\right)}{A}\right), \qquad A=\frac{1+\rho}{1-\rho}, $$ where \(s = (H(\phi_0) + q) \bmod 1\) and \(\phi_0\) is the anchored angle at \(x=0\). This matches the direct normalised CDF and keeps ppf in sync with cdf and the Möbius sampler used by rvs.

Source code in pycircstat2/distributions.py
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
def ppf(self, q, mu, rho, *args, **kwargs):
    r"""
    Percent-point function (inverse CDF) of the Wrapped Cauchy distribution.

    The quantile is obtained by inverting the Möbius form of the CDF:
    $$
    \phi = 2 \arctan\!\left(\frac{\tan\left(\pi (s-\tfrac12)\right)}{A}\right),
    \qquad A=\frac{1+\rho}{1-\rho},
    $$
    where $s = (H(\phi_0) + q) \bmod 1$ and $\phi_0$ is the anchored angle
    at $x=0$. This matches the direct normalised CDF and keeps ``ppf`` in
    sync with ``cdf`` and the Möbius sampler used by ``rvs``.
    """
    return super().ppf(q, mu, rho, *args, **kwargs)

rvs(mu=None, rho=None, size=None, random_state=None)

Draw random variates from the Wrapped Cauchy distribution.

Parameters:

Name Type Description Default
mu float

Mean direction, 0 <= mu <= 2*pi. Supply explicitly or by freezing the distribution.

None
rho float

Shape parameter, 0 <= rho < 1. Supply explicitly or by freezing the distribution.

None
size int or tuple of ints

Number of samples to draw. None (default) returns a scalar.

None
random_state np.random.Generator, np.random.RandomState, or None

Random number generator to use.

None

Returns:

Name Type Description
samples ndarray or float

Random variates on [0, 2π).

Source code in pycircstat2/distributions.py
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
def rvs(self, mu=None, rho=None, size=None, random_state=None):
    """
    Draw random variates from the Wrapped Cauchy distribution.

    Parameters
    ----------
    mu : float, optional
        Mean direction, ``0 <= mu <= 2*pi``. Supply explicitly or by
        freezing the distribution.
    rho : float, optional
        Shape parameter, ``0 <= rho < 1``. Supply explicitly or by freezing
        the distribution.
    size : int or tuple of ints, optional
        Number of samples to draw. ``None`` (default) returns a scalar.
    random_state : np.random.Generator, np.random.RandomState, or None, optional
        Random number generator to use.

    Returns
    -------
    samples : ndarray or float
        Random variates on ``[0, 2π)``.
    """
    mu_val = getattr(self, "mu", None) if mu is None else mu
    rho_val = getattr(self, "rho", None) if rho is None else rho

    if mu_val is None or rho_val is None:
        raise ValueError("Both 'mu' and 'rho' must be provided.")

    return self._rvs(mu_val, rho_val, size=size, random_state=random_state)

fit(data, *, weights=None, method='mle', return_info=False, optimizer='L-BFGS-B', **kwargs)

Estimate mu and rho for the wrapped Cauchy distribution.

Parameters:

Name Type Description Default
data array_like

Sample angles (radians). Values are wrapped to [0, 2π) internally.

required
weights array_like

Non-negative weights broadcastable to data.

None
method (moments, mle)

Estimation strategy. "moments" (alias: "analytical") returns the closed-form estimates based on the first trigonometric moment. "mle" (alias: "numerical") maximises the weighted log-likelihood.

"moments"
return_info bool

If True, also return a diagnostic dictionary.

False
optimizer str

Optimiser passed to scipy.optimize.minimize when method="mle".

'L-BFGS-B'
**kwargs

Additional keyword arguments forwarded to the optimiser.

{}
Source code in pycircstat2/distributions.py
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
def fit(
    self,
    data,
    *,
    weights=None,
    method="mle",
    return_info=False,
    optimizer="L-BFGS-B",
    **kwargs,
):
    """
    Estimate ``mu`` and ``rho`` for the wrapped Cauchy distribution.

    Parameters
    ----------
    data : array_like
        Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally.
    weights : array_like, optional
        Non-negative weights broadcastable to ``data``.
    method : {"moments", "mle"}, optional
        Estimation strategy. ``"moments"`` (alias: "analytical") returns the
        closed-form estimates based on the first trigonometric moment.
        ``"mle"`` (alias: "numerical") maximises the weighted log-likelihood.
    return_info : bool, optional
        If True, also return a diagnostic dictionary.
    optimizer : str, optional
        Optimiser passed to ``scipy.optimize.minimize`` when
        ``method="mle"``.
    **kwargs :
        Additional keyword arguments forwarded to the optimiser.
    """
    kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
    x = self._wrap_angles(np.asarray(data, dtype=float))
    if x.size == 0:
        raise ValueError("`data` must contain at least one observation.")

    if weights is None:
        w = np.ones_like(x, dtype=float)
    else:
        w = np.asarray(weights, dtype=float)
        if np.any(w < 0):
            raise ValueError("`weights` must be non-negative.")
        w = np.broadcast_to(w, x.shape).astype(float, copy=False)

    w_sum = float(np.sum(w))
    if not np.isfinite(w_sum) or w_sum <= 0:
        raise ValueError("Sum of weights must be positive.")
    n_eff = w_sum**2 / np.sum(w**2)

    mu_mom, rho_mom = circ_mean_and_r(alpha=x, w=w)
    if not np.isfinite(mu_mom):
        mu_mom = float(0.0)
    mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
    rho_mom = float(np.clip(rho_mom, 0.0, 1.0 - 1e-12))

    def nll(params):
        mu_param, rho_param = params
        if not (0.0 <= rho_param < 1.0):
            return np.inf
        denom = np.clip(1.0 + rho_param**2 - 2.0 * rho_param * np.cos(x - mu_param), 1e-15, None)
        log_pdf = np.log1p(-rho_param**2) - np.log(2.0 * np.pi) - np.log(denom)
        value = -np.sum(w * log_pdf)
        return float(value)

    def grad(params):
        mu_param, rho_param = params
        denom = np.clip(1.0 + rho_param**2 - 2.0 * rho_param * np.cos(x - mu_param), 1e-15, None)
        cos_term = np.cos(x - mu_param)
        sin_term = np.sin(x - mu_param)

        inv_denom = w / denom
        g_mu = -2.0 * rho_param * np.sum(inv_denom * sin_term)
        g_rho = (
            w_sum * (2.0 * rho_param / np.clip(1.0 - rho_param**2, 1e-15, None))
            + np.sum(inv_denom * (2.0 * rho_param - 2.0 * cos_term))
        )
        return np.array([g_mu, g_rho], dtype=float)

    method_key = method.lower()
    alias = {"analytical": "moments", "numerical": "mle"}
    method_key = alias.get(method_key, method_key)

    if "algorithm" in kwargs:
        optimizer = kwargs.pop("algorithm")

    if method_key not in {"moments", "mle"}:
        raise ValueError("`method` must be one of {'moments', 'mle', 'analytical', 'numerical'}.")

    if method_key == "moments":
        mu_hat = self._wrap_direction(mu_mom)
        rho_hat = rho_mom
        info = {
            "method": "moments",
            "loglik": float(-nll((mu_hat, rho_hat))),
            "n_effective": float(n_eff),
            "converged": True,
        }
    else:
        bounds = [(0.0, 2.0 * np.pi), (1e-9, 1.0 - 1e-9)]
        init = np.array([mu_mom, max(1e-3, min(rho_mom, 1.0 - 1e-3))], dtype=float)
        result = minimize(
            nll,
            init,
            method=optimizer,
            jac=grad,
            bounds=bounds,
            **kwargs,
        )
        if not result.success:
            raise RuntimeError(f"wrapcauchy.fit(method='mle') failed: {result.message}")
        mu_hat = self._wrap_direction(float(result.x[0]))
        rho_hat = float(np.clip(result.x[1], 1e-9, 1.0 - 1e-9))
        info = {
            "method": "mle",
            "loglik": float(-result.fun),
            "n_effective": float(n_eff),
            "converged": bool(result.success),
            "nit": result.nit,
            "grad_norm": float(np.linalg.norm(result.jac))
            if getattr(result, "jac", None) is not None
            else np.nan,
            "optimizer": optimizer,
        }

    estimates = (mu_hat, rho_hat)
    if return_info:
        return estimates, info
    return estimates

vonmises_gen

Bases: CircularContinuous

Von Mises Distribution

vonmises

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

ppf

Percent-point function (inverse of CDF).

rvs

Random variates.

fit

Fit the distribution to the data and return the parameters (mu, kappa).

Examples:

from pycircstat2.distributions import vonmises
References
  • Section 4.3.8 of Pewsey et al. (2014)
Source code in pycircstat2/distributions.py
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
class vonmises_gen(CircularContinuous):
    """Von Mises Distribution

    ![vonmises](../images/circ-mod-vonmises.png)

    Methods
    -------
    pdf(x, mu, kappa)
        Probability density function.

    cdf(x, mu, kappa)
        Cumulative distribution function.

    ppf(q, mu, kappa)
        Percent-point function (inverse of CDF).

    rvs(mu, kappa, size=None, random_state=None)
        Random variates.

    fit(data, *args, **kwargs)
        Fit the distribution to the data and return the parameters (mu, kappa).

    Examples
    --------
    ```
    from pycircstat2.distributions import vonmises
    ```

    References
    ----------
    - Section 4.3.8 of Pewsey et al. (2014)

    """

    _freeze_doc = """
    Freeze the distribution with specific parameters.

    Parameters
    ----------
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    rv_frozen : rv_frozen instance
        The frozen distribution instance with fixed parameters.
    """

    def __call__(self, *args, **kwds):
        return self.freeze(*args, **kwds)

    __call__.__doc__ = _freeze_doc

    def _argcheck(self, mu, kappa):
        try:
            mu_arr, kappa_arr = np.broadcast_arrays(mu, kappa)
        except ValueError:
            return False
        return (
            (mu_arr >= 0.0)
            & (mu_arr <= 2.0 * np.pi)
            & (kappa_arr > 0.0)
        )

    def _pdf(self, x, mu, kappa):
        return np.exp(kappa * np.cos(x - mu)) / (2 * np.pi * i0(kappa))

    def pdf(self, x, mu, kappa, *args, **kwargs):
        r"""
        Probability density function of the Von Mises distribution.

        $$
        f(\theta) = \frac{e^{\kappa \cos(\theta - \mu)}}{2\pi I_0(\kappa)}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            The mean direction of the distribution (0 <= mu <= 2*pi).
        kappa : float
            The concentration parameter of the distribution (kappa > 0).

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, kappa, *args, **kwargs)

    def _logpdf(self, x, mu, kappa):
        return kappa * np.cos(x - mu) - np.log(2 * np.pi * i0(kappa))

    def logpdf(self, x, mu, kappa, *args, **kwargs):
        """
        Logarithm of the probability density function of the Von Mises
        distribution.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the logarithm of the probability density function.
        mu : float
            The mean direction of the distribution (0 <= mu <= 2*pi).
        kappa : float
            The concentration parameter of the distribution (kappa > 0).

        Returns
        -------
        logpdf_values : array_like
            Logarithm of the probability density function evaluated at `x`.
        """
        return super().logpdf(x, mu, kappa, *args, **kwargs)

    def _cdf(self, x, mu, kappa):
        wrapped = self._wrap_angles(x)
        arr = np.asarray(wrapped, dtype=float)
        flat = arr.reshape(-1)

        if flat.size == 0:
            return arr.astype(float)

        mu_arr = np.asarray(mu, dtype=float)
        kappa_arr = np.asarray(kappa, dtype=float)

        mu_val = float(mu_arr.reshape(-1)[0])
        if mu_arr.size > 1 and not np.allclose(mu_arr, mu_val, atol=0.0, rtol=0.0):
            raise ValueError("vonmises parameters must be broadcastable scalars.")

        kappa_val = float(kappa_arr.reshape(-1)[0])
        if kappa_arr.size > 1 and not np.allclose(kappa_arr, kappa_val, atol=0.0, rtol=0.0):
            raise ValueError("vonmises parameters must be broadcastable scalars.")
        two_pi = 2.0 * np.pi

        if kappa_val < 1e-9:
            uniform = flat / two_pi
            if arr.ndim == 0:
                value = float(uniform[0])
                return 1.0 if np.isclose(float(wrapped), two_pi) else value
            result = uniform.reshape(arr.shape)
            result[np.isclose(arr, two_pi)] = 1.0
            return result

        denom = i0(kappa_val)
        if not np.isfinite(denom) or denom == 0.0:
            return self._cdf_from_pdf(x, mu, kappa)

        phi = (flat - mu_val + np.pi) % two_pi - np.pi
        base_phi = (-mu_val + np.pi) % two_pi - np.pi

        term_sum = np.zeros_like(phi)
        term_base = 0.0
        tol = 1e-12
        max_terms = 500
        converged = False

        for n in range(1, max_terms + 1):
            coeff = iv(n, kappa_val) / (denom * n)
            if not np.isfinite(coeff):
                continue

            term = coeff * np.sin(n * phi)
            term_sum += term
            term_base += coeff * np.sin(n * base_phi)

            max_term = np.max(np.abs(term))
            if max_term < tol and abs(coeff) < tol:
                converged = True
                break

        if not converged:
            return self._cdf_from_pdf(x, mu, kappa)

        cdf_raw = 0.5 + phi / two_pi + (1.0 / np.pi) * term_sum
        base_val = 0.5 + base_phi / two_pi + (1.0 / np.pi) * term_base

        forward = np.clip(cdf_raw - base_val, 0.0, 1.0)
        backward = np.clip(base_val - cdf_raw, 0.0, 1.0)
        cdf = np.where(phi >= base_phi, forward, 1.0 - backward)
        cdf = np.clip(cdf, 0.0, 1.0)

        if arr.ndim == 0:
            value = float(cdf[0])
            return 1.0 if np.isclose(float(wrapped), two_pi) else value

        result = cdf.reshape(arr.shape)
        result[np.isclose(arr, two_pi)] = 1.0
        return result

    def cdf(self, x, mu, kappa, *args, **kwargs):
        r"""
        Cumulative distribution function of the Von Mises distribution.

        $$
        F(\theta) = \frac{1}{2 \pi I_0(\kappa)}\int_{0}^{\theta} e^{\kappa \cos(\theta - \mu)} dx
        $$

        The CDF is evaluated via its Fourier-Bessel series expansion,
        $$
        F(\theta) = \frac{1}{2} + \frac{\theta - \mu}{2\pi}
        + \frac{1}{\pi}\sum_{n=1}^{\infty} \frac{I_n(\kappa)}{I_0(\kappa)\,n}
        \sin\bigl(n(\theta - \mu)\bigr),
        $$
        truncated adaptively for numerical stability and re-normalised to the
        $[0, 2\pi)$ support.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            The mean direction of the distribution (0 <= mu <= 2*pi).
        kappa : float
            The concentration parameter of the distribution (kappa > 0).

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, kappa, *args, **kwargs)

    def _ppf(self, q, mu, kappa):
        mu_arr = np.asarray(mu, dtype=float)
        kappa_arr = np.asarray(kappa, dtype=float)

        mu_val = float(np.mod(mu_arr.reshape(-1)[0], 2.0 * np.pi))
        kappa_val = float(kappa_arr.reshape(-1)[0])
        if kappa_val < 0.0:
            raise ValueError("`kappa` must be non-negative.")

        q_arr = np.asarray(q, dtype=float)
        flat = q_arr.reshape(-1)
        if flat.size == 0:
            return q_arr.astype(float)

        result = np.full_like(flat, np.nan, dtype=float)

        lower_mask = flat <= 0.0
        upper_mask = flat >= 1.0
        result[lower_mask] = 0.0
        result[upper_mask] = 2.0 * np.pi

        interior = ~(lower_mask | upper_mask)
        if not np.any(interior):
            return result.reshape(q_arr.shape)

        q_int = flat[interior]
        two_pi = 2.0 * np.pi

        if kappa_val <= 1e-9:
            result[interior] = (two_pi * q_int) % two_pi
            return result.reshape(q_arr.shape)

        eps = 1e-15
        q_clipped = np.clip(q_int, eps, 1.0 - eps)

        theta = (mu_val + two_pi * (q_clipped - 0.5)) % two_pi
        if kappa_val < 0.3:
            theta = (two_pi * q_clipped) % two_pi
        elif kappa_val > 5.0:
            normal_guess = mu_val + ndtri(q_clipped) / np.sqrt(kappa_val)
            normal_guess = np.mod(normal_guess, two_pi)
            blend = 0.5 if kappa_val < 20.0 else 0.8
            theta = np.mod(blend * normal_guess + (1.0 - blend) * (two_pi * q_clipped), two_pi)

        L = np.zeros_like(theta)
        H = np.full_like(theta, two_pi)

        tol_cdf = 1e-12
        tol_theta = 1e-10
        max_iter = 6

        theta_curr = theta.copy()
        for _ in range(max_iter):
            cdf_vals = np.asarray(self.cdf(theta_curr, mu_val, kappa_val), dtype=float)
            pdf_vals = np.exp(kappa_val * np.cos(theta_curr - mu_val)) / (2.0 * np.pi * i0(kappa_val))
            delta = cdf_vals - q_clipped

            L = np.where(delta <= 0.0, theta_curr, L)
            H = np.where(delta > 0.0, theta_curr, H)

            converged = (np.abs(delta) <= tol_cdf) & ((H - L) <= tol_theta)
            if np.all(converged):
                break

            denom = np.where(pdf_vals > 1e-15, pdf_vals, 1e-15)
            step = np.clip(delta / denom, -np.pi, np.pi)
            theta_next = theta_curr - step
            midpoint = 0.5 * (L + H)
            theta_next = np.where((theta_next <= L) | (theta_next >= H), midpoint, theta_next)
            theta_next = np.mod(theta_next, two_pi)
            theta_curr = theta_next

        delta = np.asarray(self.cdf(theta_curr, mu_val, kappa_val), dtype=float) - q_clipped
        mask = (np.abs(delta) > tol_cdf) | ((H - L) > tol_theta)
        if np.any(mask):
            theta_b = theta_curr.copy()
            L_b = L.copy()
            H_b = H.copy()
            for _ in range(30):
                if not np.any(mask):
                    break
                mid = 0.5 * (L_b + H_b)
                mid_vals = np.asarray(self.cdf(mid, mu_val, kappa_val), dtype=float)
                delta_mid = mid_vals - q_clipped
                take_upper = (delta_mid > 0.0) & mask
                take_lower = (~take_upper) & mask
                H_b = np.where(take_upper, mid, H_b)
                L_b = np.where(take_lower, mid, L_b)
                theta_b = np.where(mask, mid, theta_b)
                mask = mask & (np.abs(delta_mid) > tol_cdf)
            theta_curr = np.where(mask, 0.5 * (L_b + H_b), theta_b)

        result[interior] = np.mod(theta_curr, two_pi)
        return result.reshape(q_arr.shape)


    def ppf(self, q, mu, kappa, *args, **kwargs):
        """
        Percent-point function (inverse of the CDF) of the Von Mises distribution.

        The quantile is obtained by inverting the analytic Fourier–Bessel series
        using a safeguarded Newton iteration with the exact von Mises PDF as the
        slope, followed by a bisection polish.

        Parameters
        ----------
        q : array_like
            Quantiles to evaluate.
        mu : float
            The mean direction of the distribution (0 <= mu <= 2*pi).
        kappa : float
            The concentration parameter of the distribution (kappa > 0).

        Returns
        -------
        ppf_values : array_like
            Values at the given quantiles.
        """
        return super().ppf(q, mu, kappa, *args, **kwargs)

    def _rvs(self, mu, kappa, size=None, random_state=None):
        rng = self._init_rng(random_state)

        mu_arr = np.asarray(mu, dtype=float)
        kappa_arr = np.asarray(kappa, dtype=float)

        mu_val = float(mu_arr.reshape(-1)[0])
        if mu_arr.size > 1 and not np.allclose(mu_arr, mu_val, atol=0.0, rtol=0.0):
            raise ValueError("vonmises parameters must be broadcastable scalars.")
        mu_val = float(np.mod(mu_val, 2.0 * np.pi))

        kappa_val = float(kappa_arr.reshape(-1)[0])
        if kappa_arr.size > 1 and not np.allclose(kappa_arr, kappa_val, atol=0.0, rtol=0.0):
            raise ValueError("vonmises parameters must be broadcastable scalars.")
        two_pi = 2.0 * np.pi

        if kappa_val <= 1e-9:
            return rng.uniform(0.0, two_pi, size=size)

        a = 1.0 + np.sqrt(1.0 + 4.0 * kappa_val**2)
        b = (a - np.sqrt(2.0 * a)) / (2.0 * kappa_val)
        r = (1.0 + b**2) / (2.0 * b)

        if size is None:
            samples = np.empty(1, dtype=float)
            target_shape = ()
        elif np.isscalar(size):
            samples = np.empty(int(size), dtype=float)
            target_shape = (int(size),)
        else:
            target_shape = tuple(int(s) for s in np.atleast_1d(size))
            samples = np.empty(int(np.prod(target_shape)), dtype=float)

        total = samples.size
        for idx in range(total):
            while True:
                u1 = rng.uniform()
                z = np.cos(np.pi * u1)
                f = (1.0 + r * z) / (r + z)
                c = kappa_val * (r - f)
                u2 = rng.uniform()
                if u2 < c * (2.0 - c) or u2 <= c * np.exp(1.0 - c):
                    break
            u3 = rng.uniform()
            theta = mu_val + np.sign(u3 - 0.5) * np.arccos(f)
            samples[idx] = np.mod(theta, two_pi)

        if target_shape == ():
            return float(samples[0])
        return samples.reshape(target_shape)

    def rvs(self, size=None, random_state=None, *args, **kwargs):
        """
        Draw random variates.

        Parameters
        ----------
        size : int or tuple, optional
            Number of samples to generate.
        random_state : RandomState, optional
            Random number generator instance.

        Returns
        -------
        samples : ndarray
            Random variates.
        """
        # Check if instance-level parameters are set
        mu = getattr(self, "mu", None)
        kappa = getattr(self, "kappa", None)

        # Override instance parameters if provided in args/kwargs
        mu = kwargs.pop("mu", mu)
        kappa = kwargs.pop("kappa", kappa)

        # Ensure required parameters are provided
        if mu is None or kappa is None:
            raise ValueError("Both 'mu' and 'kappa' must be provided.")

        # Call the private _rvs method
        return self._rvs(mu, kappa, size=size, random_state=random_state)

    def support(self, *args, **kwargs):
        return (0, 2 * np.pi)

    def mean(self, *args, **kwargs):
        """
        Circular mean of the Von Mises distribution.

        Returns
        -------
        mean : float
            The circular mean direction (in radians), equal to `mu`.
        """
        (mu, _) = self._parse_args(*args, **kwargs)[0]
        return mu

    def median(self, *args, **kwargs):
        """
        Circular median of the Von Mises distribution.

        Returns
        -------
        median : float
            The circular median direction (in radians), equal to `mu`.
        """
        return self.mean(*args, **kwargs)

    def var(self, *args, **kwargs):
        """
        Circular variance of the Von Mises distribution.

        Returns
        -------
        variance : float
            The circular variance, derived from `kappa`.
        """
        (_, kappa) = self._parse_args(*args, **kwargs)[0]
        return 1 - i1(kappa) / i0(kappa)

    def std(self, *args, **kwargs):
        """
        Circular standard deviation of the Von Mises distribution.

        Returns
        -------
        std : float
            The circular standard deviation, derived from `kappa`.
        """
        (_, kappa) = self._parse_args(*args, **kwargs)[0]
        r = i1(kappa) / i0(kappa)

        return np.sqrt(-2 * np.log(r))

    def entropy(self, *args, **kwargs):
        """
        Entropy of the Von Mises distribution.

        Returns
        -------
        entropy : float
            The entropy of the distribution.
        """
        (_, kappa) = self._parse_args(*args, **kwargs)[0]
        return -np.log(i0(kappa)) + (kappa * i1(kappa)) / i0(kappa)

    def _nnlf(self, theta, data):
        """
        Custom negative log-likelihood function for the Von Mises distribution.
        """
        mu, kappa = theta

        if not self._argcheck(mu, kappa):  # Validate parameter range
            return np.inf

        # Compute log-likelihood robustly
        log_likelihood = self._logpdf(data, mu, kappa)

        # Negative log-likelihood
        return -np.sum(log_likelihood)

    def fit(
        self,
        data,
        *,
        weights=None,
        method="mle",
        return_info=False,
        optimizer="L-BFGS-B",
        **kwargs,
    ):
        """
        Estimate ``mu`` and ``kappa`` for the von Mises distribution.

        Parameters
        ----------
        data : array_like
            Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally.
        weights : array_like, optional
            Non-negative weights broadcastable to ``data``.
        method : {"moments", "mle"}, optional
            Estimation strategy. ``"moments"`` (alias ``"analytical"``) returns
            the circular mean together with the standard approximation for
            ``kappa``. ``"mle"`` (alias ``"numerical"``) maximises the weighted
            log-likelihood using a bounded optimiser.
        return_info : bool, optional
            If True, return a diagnostics dictionary alongside the estimates.
        optimizer : str, optional
            Optimiser passed to ``scipy.optimize.minimize`` when
            ``method="mle"``.
        **kwargs :
            Additional keyword arguments forwarded to the optimiser.
        """
        kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
        x = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
        if x.size == 0:
            raise ValueError("`data` must contain at least one observation.")

        if weights is None:
            w = np.ones_like(x, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            if np.any(w < 0):
                raise ValueError("`weights` must be non-negative.")
            w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel()

        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0:
            raise ValueError("Sum of weights must be positive.")
        n_eff = w_sum**2 / np.sum(w**2)

        mu_mom, r_mom = circ_mean_and_r(alpha=x, w=w)
        if not np.isfinite(mu_mom):
            mu_mom = float(0.0)
        mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
        r_mom = float(np.clip(r_mom, 1e-12, 1.0 - 1e-12))
        n_adjust = int(max(1, round(w_sum)))
        kappa_mom = float(np.clip(circ_kappa(r=r_mom, n=n_adjust), 1e-9, 1e6))

        method_key = method.lower()
        alias = {"analytical": "moments", "numerical": "mle"}
        method_key = alias.get(method_key, method_key)

        if "algorithm" in kwargs:
            optimizer = kwargs.pop("algorithm")

        if method_key not in {"moments", "mle"}:
            raise ValueError("`method` must be one of {'moments', 'mle', 'analytical', 'numerical'}.")

        def nll(params):
            mu_param, kappa_param = params
            if not (kappa_param > 0.0):
                return np.inf
            cos_term = np.cos(x - mu_param)
            sum_cos = np.sum(w * cos_term)
            log_i0_val = np.log(i0(kappa_param))
            return float(
                -kappa_param * sum_cos + w_sum * (np.log(2.0 * np.pi) + log_i0_val)
            )

        def grad(params):
            mu_param, kappa_param = params
            cos_term = np.cos(x - mu_param)
            sin_term = np.sin(x - mu_param)
            sum_sin = np.sum(w * sin_term)
            sum_cos = np.sum(w * cos_term)
            ratio = i1(kappa_param) / i0(kappa_param)
            g_mu = kappa_param * sum_sin
            g_kappa = -sum_cos + w_sum * ratio
            return np.array([g_mu, g_kappa], dtype=float)

        if method_key == "moments":
            mu_hat = self._wrap_direction(mu_mom)
            kappa_hat = kappa_mom
            info = {
                "method": "moments",
                "loglik": float(-nll((mu_hat, kappa_hat))),
                "n_effective": float(n_eff),
                "converged": True,
            }
        else:
            bounds = [(0.0, 2.0 * np.pi), (1e-9, 1e6)]
            init = np.array([mu_mom, kappa_mom], dtype=float)
            result = minimize(
                nll,
                init,
                method=optimizer,
                jac=grad,
                bounds=bounds,
                **kwargs,
            )
            if not result.success:
                raise RuntimeError(
                    f"vonmises.fit(method='mle') failed: {result.message}"
                )
            mu_hat = self._wrap_direction(float(result.x[0]))
            kappa_hat = float(np.clip(result.x[1], 1e-9, 1e6))
            info = {
                "method": "mle",
                "loglik": float(-result.fun),
                "n_effective": float(n_eff),
                "converged": bool(result.success),
                "nit": result.nit,
                "grad_norm": float(np.linalg.norm(result.jac))
                if getattr(result, "jac", None) is not None
                else np.nan,
                "optimizer": optimizer,
            }

        estimates = (mu_hat, kappa_hat)
        if return_info:
            return estimates, info
        return estimates

pdf(x, mu, kappa, *args, **kwargs)

Probability density function of the Von Mises distribution.

\[ f(\theta) = \frac{e^{\kappa \cos(\theta - \mu)}}{2\pi I_0(\kappa)} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

The mean direction of the distribution (0 <= mu <= 2*pi).

required
kappa float

The concentration parameter of the distribution (kappa > 0).

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
def pdf(self, x, mu, kappa, *args, **kwargs):
    r"""
    Probability density function of the Von Mises distribution.

    $$
    f(\theta) = \frac{e^{\kappa \cos(\theta - \mu)}}{2\pi I_0(\kappa)}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, kappa, *args, **kwargs)

logpdf(x, mu, kappa, *args, **kwargs)

Logarithm of the probability density function of the Von Mises distribution.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the logarithm of the probability density function.

required
mu float

The mean direction of the distribution (0 <= mu <= 2*pi).

required
kappa float

The concentration parameter of the distribution (kappa > 0).

required

Returns:

Name Type Description
logpdf_values array_like

Logarithm of the probability density function evaluated at x.

Source code in pycircstat2/distributions.py
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
def logpdf(self, x, mu, kappa, *args, **kwargs):
    """
    Logarithm of the probability density function of the Von Mises
    distribution.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the logarithm of the probability density function.
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    logpdf_values : array_like
        Logarithm of the probability density function evaluated at `x`.
    """
    return super().logpdf(x, mu, kappa, *args, **kwargs)

cdf(x, mu, kappa, *args, **kwargs)

Cumulative distribution function of the Von Mises distribution.

\[ F(\theta) = \frac{1}{2 \pi I_0(\kappa)}\int_{0}^{\theta} e^{\kappa \cos(\theta - \mu)} dx \]

The CDF is evaluated via its Fourier-Bessel series expansion, $$ F(\theta) = \frac{1}{2} + \frac{\theta - \mu}{2\pi} + \frac{1}{\pi}\sum_{n=1}^{\infty} \frac{I_n(\kappa)}{I_0(\kappa)\,n} \sin\bigl(n(\theta - \mu)\bigr), $$ truncated adaptively for numerical stability and re-normalised to the \([0, 2\pi)\) support.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

The mean direction of the distribution (0 <= mu <= 2*pi).

required
kappa float

The concentration parameter of the distribution (kappa > 0).

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
def cdf(self, x, mu, kappa, *args, **kwargs):
    r"""
    Cumulative distribution function of the Von Mises distribution.

    $$
    F(\theta) = \frac{1}{2 \pi I_0(\kappa)}\int_{0}^{\theta} e^{\kappa \cos(\theta - \mu)} dx
    $$

    The CDF is evaluated via its Fourier-Bessel series expansion,
    $$
    F(\theta) = \frac{1}{2} + \frac{\theta - \mu}{2\pi}
    + \frac{1}{\pi}\sum_{n=1}^{\infty} \frac{I_n(\kappa)}{I_0(\kappa)\,n}
    \sin\bigl(n(\theta - \mu)\bigr),
    $$
    truncated adaptively for numerical stability and re-normalised to the
    $[0, 2\pi)$ support.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, kappa, *args, **kwargs)

ppf(q, mu, kappa, *args, **kwargs)

Percent-point function (inverse of the CDF) of the Von Mises distribution.

The quantile is obtained by inverting the analytic Fourier–Bessel series using a safeguarded Newton iteration with the exact von Mises PDF as the slope, followed by a bisection polish.

Parameters:

Name Type Description Default
q array_like

Quantiles to evaluate.

required
mu float

The mean direction of the distribution (0 <= mu <= 2*pi).

required
kappa float

The concentration parameter of the distribution (kappa > 0).

required

Returns:

Name Type Description
ppf_values array_like

Values at the given quantiles.

Source code in pycircstat2/distributions.py
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
def ppf(self, q, mu, kappa, *args, **kwargs):
    """
    Percent-point function (inverse of the CDF) of the Von Mises distribution.

    The quantile is obtained by inverting the analytic Fourier–Bessel series
    using a safeguarded Newton iteration with the exact von Mises PDF as the
    slope, followed by a bisection polish.

    Parameters
    ----------
    q : array_like
        Quantiles to evaluate.
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    ppf_values : array_like
        Values at the given quantiles.
    """
    return super().ppf(q, mu, kappa, *args, **kwargs)

rvs(size=None, random_state=None, *args, **kwargs)

Draw random variates.

Parameters:

Name Type Description Default
size int or tuple

Number of samples to generate.

None
random_state RandomState

Random number generator instance.

None

Returns:

Name Type Description
samples ndarray

Random variates.

Source code in pycircstat2/distributions.py
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
def rvs(self, size=None, random_state=None, *args, **kwargs):
    """
    Draw random variates.

    Parameters
    ----------
    size : int or tuple, optional
        Number of samples to generate.
    random_state : RandomState, optional
        Random number generator instance.

    Returns
    -------
    samples : ndarray
        Random variates.
    """
    # Check if instance-level parameters are set
    mu = getattr(self, "mu", None)
    kappa = getattr(self, "kappa", None)

    # Override instance parameters if provided in args/kwargs
    mu = kwargs.pop("mu", mu)
    kappa = kwargs.pop("kappa", kappa)

    # Ensure required parameters are provided
    if mu is None or kappa is None:
        raise ValueError("Both 'mu' and 'kappa' must be provided.")

    # Call the private _rvs method
    return self._rvs(mu, kappa, size=size, random_state=random_state)

mean(*args, **kwargs)

Circular mean of the Von Mises distribution.

Returns:

Name Type Description
mean float

The circular mean direction (in radians), equal to mu.

Source code in pycircstat2/distributions.py
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
def mean(self, *args, **kwargs):
    """
    Circular mean of the Von Mises distribution.

    Returns
    -------
    mean : float
        The circular mean direction (in radians), equal to `mu`.
    """
    (mu, _) = self._parse_args(*args, **kwargs)[0]
    return mu

median(*args, **kwargs)

Circular median of the Von Mises distribution.

Returns:

Name Type Description
median float

The circular median direction (in radians), equal to mu.

Source code in pycircstat2/distributions.py
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
def median(self, *args, **kwargs):
    """
    Circular median of the Von Mises distribution.

    Returns
    -------
    median : float
        The circular median direction (in radians), equal to `mu`.
    """
    return self.mean(*args, **kwargs)

var(*args, **kwargs)

Circular variance of the Von Mises distribution.

Returns:

Name Type Description
variance float

The circular variance, derived from kappa.

Source code in pycircstat2/distributions.py
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
def var(self, *args, **kwargs):
    """
    Circular variance of the Von Mises distribution.

    Returns
    -------
    variance : float
        The circular variance, derived from `kappa`.
    """
    (_, kappa) = self._parse_args(*args, **kwargs)[0]
    return 1 - i1(kappa) / i0(kappa)

std(*args, **kwargs)

Circular standard deviation of the Von Mises distribution.

Returns:

Name Type Description
std float

The circular standard deviation, derived from kappa.

Source code in pycircstat2/distributions.py
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
def std(self, *args, **kwargs):
    """
    Circular standard deviation of the Von Mises distribution.

    Returns
    -------
    std : float
        The circular standard deviation, derived from `kappa`.
    """
    (_, kappa) = self._parse_args(*args, **kwargs)[0]
    r = i1(kappa) / i0(kappa)

    return np.sqrt(-2 * np.log(r))

entropy(*args, **kwargs)

Entropy of the Von Mises distribution.

Returns:

Name Type Description
entropy float

The entropy of the distribution.

Source code in pycircstat2/distributions.py
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
def entropy(self, *args, **kwargs):
    """
    Entropy of the Von Mises distribution.

    Returns
    -------
    entropy : float
        The entropy of the distribution.
    """
    (_, kappa) = self._parse_args(*args, **kwargs)[0]
    return -np.log(i0(kappa)) + (kappa * i1(kappa)) / i0(kappa)

fit(data, *, weights=None, method='mle', return_info=False, optimizer='L-BFGS-B', **kwargs)

Estimate mu and kappa for the von Mises distribution.

Parameters:

Name Type Description Default
data array_like

Sample angles (radians). Values are wrapped to [0, 2π) internally.

required
weights array_like

Non-negative weights broadcastable to data.

None
method (moments, mle)

Estimation strategy. "moments" (alias "analytical") returns the circular mean together with the standard approximation for kappa. "mle" (alias "numerical") maximises the weighted log-likelihood using a bounded optimiser.

"moments"
return_info bool

If True, return a diagnostics dictionary alongside the estimates.

False
optimizer str

Optimiser passed to scipy.optimize.minimize when method="mle".

'L-BFGS-B'
**kwargs

Additional keyword arguments forwarded to the optimiser.

{}
Source code in pycircstat2/distributions.py
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
def fit(
    self,
    data,
    *,
    weights=None,
    method="mle",
    return_info=False,
    optimizer="L-BFGS-B",
    **kwargs,
):
    """
    Estimate ``mu`` and ``kappa`` for the von Mises distribution.

    Parameters
    ----------
    data : array_like
        Sample angles (radians). Values are wrapped to ``[0, 2π)`` internally.
    weights : array_like, optional
        Non-negative weights broadcastable to ``data``.
    method : {"moments", "mle"}, optional
        Estimation strategy. ``"moments"`` (alias ``"analytical"``) returns
        the circular mean together with the standard approximation for
        ``kappa``. ``"mle"`` (alias ``"numerical"``) maximises the weighted
        log-likelihood using a bounded optimiser.
    return_info : bool, optional
        If True, return a diagnostics dictionary alongside the estimates.
    optimizer : str, optional
        Optimiser passed to ``scipy.optimize.minimize`` when
        ``method="mle"``.
    **kwargs :
        Additional keyword arguments forwarded to the optimiser.
    """
    kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
    x = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
    if x.size == 0:
        raise ValueError("`data` must contain at least one observation.")

    if weights is None:
        w = np.ones_like(x, dtype=float)
    else:
        w = np.asarray(weights, dtype=float)
        if np.any(w < 0):
            raise ValueError("`weights` must be non-negative.")
        w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel()

    w_sum = float(np.sum(w))
    if not np.isfinite(w_sum) or w_sum <= 0:
        raise ValueError("Sum of weights must be positive.")
    n_eff = w_sum**2 / np.sum(w**2)

    mu_mom, r_mom = circ_mean_and_r(alpha=x, w=w)
    if not np.isfinite(mu_mom):
        mu_mom = float(0.0)
    mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
    r_mom = float(np.clip(r_mom, 1e-12, 1.0 - 1e-12))
    n_adjust = int(max(1, round(w_sum)))
    kappa_mom = float(np.clip(circ_kappa(r=r_mom, n=n_adjust), 1e-9, 1e6))

    method_key = method.lower()
    alias = {"analytical": "moments", "numerical": "mle"}
    method_key = alias.get(method_key, method_key)

    if "algorithm" in kwargs:
        optimizer = kwargs.pop("algorithm")

    if method_key not in {"moments", "mle"}:
        raise ValueError("`method` must be one of {'moments', 'mle', 'analytical', 'numerical'}.")

    def nll(params):
        mu_param, kappa_param = params
        if not (kappa_param > 0.0):
            return np.inf
        cos_term = np.cos(x - mu_param)
        sum_cos = np.sum(w * cos_term)
        log_i0_val = np.log(i0(kappa_param))
        return float(
            -kappa_param * sum_cos + w_sum * (np.log(2.0 * np.pi) + log_i0_val)
        )

    def grad(params):
        mu_param, kappa_param = params
        cos_term = np.cos(x - mu_param)
        sin_term = np.sin(x - mu_param)
        sum_sin = np.sum(w * sin_term)
        sum_cos = np.sum(w * cos_term)
        ratio = i1(kappa_param) / i0(kappa_param)
        g_mu = kappa_param * sum_sin
        g_kappa = -sum_cos + w_sum * ratio
        return np.array([g_mu, g_kappa], dtype=float)

    if method_key == "moments":
        mu_hat = self._wrap_direction(mu_mom)
        kappa_hat = kappa_mom
        info = {
            "method": "moments",
            "loglik": float(-nll((mu_hat, kappa_hat))),
            "n_effective": float(n_eff),
            "converged": True,
        }
    else:
        bounds = [(0.0, 2.0 * np.pi), (1e-9, 1e6)]
        init = np.array([mu_mom, kappa_mom], dtype=float)
        result = minimize(
            nll,
            init,
            method=optimizer,
            jac=grad,
            bounds=bounds,
            **kwargs,
        )
        if not result.success:
            raise RuntimeError(
                f"vonmises.fit(method='mle') failed: {result.message}"
            )
        mu_hat = self._wrap_direction(float(result.x[0]))
        kappa_hat = float(np.clip(result.x[1], 1e-9, 1e6))
        info = {
            "method": "mle",
            "loglik": float(-result.fun),
            "n_effective": float(n_eff),
            "converged": bool(result.success),
            "nit": result.nit,
            "grad_norm": float(np.linalg.norm(result.jac))
            if getattr(result, "jac", None) is not None
            else np.nan,
            "optimizer": optimizer,
        }

    estimates = (mu_hat, kappa_hat)
    if return_info:
        return estimates, info
    return estimates

vonmises_flattopped_gen

Bases: CircularContinuous

Flat-topped von Mises Distribution

The Flat-topped von Mises distribution is a modification of the von Mises distribution that allows for more flexible peak shapes, including flattened or sharper tops, depending on the value of the shape parameter \(\nu\).

vonmises-ext

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Parameters must be scalar; cached normalization tables are built per parameter set. Implementation based on Section 4.3.10 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
class vonmises_flattopped_gen(CircularContinuous):
    r"""Flat-topped von Mises Distribution

    The Flat-topped von Mises distribution is a modification of the von Mises distribution
    that allows for more flexible peak shapes, including flattened or sharper tops, depending
    on the value of the shape parameter $\nu$.

    ![vonmises-ext](../images/circ-mod-vonmises-flat-topped.png)

    Methods
    -------
    pdf(x, mu, kappa, nu)
        Probability density function.

    cdf(x, mu, kappa, nu)
        Cumulative distribution function.

    Note
    ----
    Parameters must be scalar; cached normalization tables are built per parameter set.
    Implementation based on Section 4.3.10 of Pewsey et al. (2014)
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._vmft_table_cache = {}
        self._vmft_sampler_cache = {}

    def _validate_params(self, mu, kappa, nu):
        mu_arr, kappa_arr, nu_arr = np.broadcast_arrays(mu, kappa, nu)
        return (
            (mu_arr >= 0.0)
            & (mu_arr <= 2.0 * np.pi)
            & (kappa_arr >= 0.0)
            & (kappa_arr <= _VMFT_KAPPA_UPPER)
            & (nu_arr >= -1.0)
            & (nu_arr <= 1.0)
        )

    def _argcheck(self, mu, kappa, nu):
        try:
            return self._validate_params(mu, kappa, nu)
        except ValueError:
            return False

    def _clear_normalization_cache(self):
        super()._clear_normalization_cache()
        self._vmft_table_cache = {}
        self._vmft_sampler_cache = {}

    def _pdf(self, x, mu, kappa, nu):
        x_arr = np.asarray(x, dtype=float)
        mu_val = _vmft_ensure_scalar(mu, "mu")
        kappa_val = float(np.clip(_vmft_ensure_scalar(kappa, "kappa"), 0.0, _VMFT_KAPPA_UPPER))
        nu_val = _vmft_ensure_scalar(nu, "nu")

        if not np.isfinite(mu_val) or not np.isfinite(kappa_val) or not np.isfinite(nu_val):
            return np.full_like(x_arr, np.nan, dtype=float)

        if kappa_val <= _VMFT_KAPPA_TOL:
            self._c = 1.0 / (2.0 * np.pi)
            return np.full_like(x_arr, self._c, dtype=float)

        table = self._get_vmft_table(kappa_val, nu_val)
        phi = ((x_arr - mu_val + np.pi) % (2.0 * np.pi)) - np.pi
        log_kernel = kappa_val * np.cos(phi + nu_val * np.sin(phi))
        log_pdf = log_kernel + table["log_normalizer"]
        pdf_vals = np.exp(log_pdf)
        self._c = table["normalizer"]  # retain attribute for existing code paths
        return pdf_vals

    def pdf(self, x, mu, kappa, nu, *args, **kwargs):
        r"""
        Probability density function of the Flat-topped von Mises distribution.

        $$
        f(\theta) = c \exp(\kappa \cos(\theta - \mu + \nu \sin(\theta - \mu)))
        $$

        , where `c` is the normalizing constant:

        $$
        c = \frac{1}{\int_{-\pi}^{\pi} \exp(\kappa \cos(\theta - \mu + \nu \sin(\theta - \mu))) d\theta}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
        mu : float
            Location parameter, $0 \leq \mu \leq 2\pi$. This is the mean direction when $\nu = 0$.
        kappa : float
            Concentration parameter, $\kappa \geq 0$. Higher values indicate a sharper peak around $\mu$.
        nu : float
            Shape parameter, $-1 \leq \nu \leq 1$. Controls the flattening or sharpening of the peak:
            - $\nu > 0$: sharper peaks.
            - $\nu < 0$: flatter peaks.

        Returns
        -------
        pdf_values : array_like
            Values of the probability density function at the specified points.


        Notes
        -----
        - The normalization constant $c$ is computed numerically, as the integral generally
        does not have a closed-form solution.
        - Special cases:
            - When $\nu = 0$, the distribution reduces to the standard von Mises distribution.
            - When $\kappa = 0$, the distribution becomes uniform on $[0, 2\pi)$.
        """
        mu_val = _vmft_ensure_scalar(mu, "mu")
        kappa_val = float(np.clip(_vmft_ensure_scalar(kappa, "kappa"), 0.0, _VMFT_KAPPA_UPPER))
        nu_val = _vmft_ensure_scalar(nu, "nu")
        return super().pdf(x, mu_val, kappa_val, nu_val, *args, **kwargs)

    def _cdf(self, x, mu, kappa, nu):
        wrapped = self._wrap_angles(x)
        arr = np.asarray(wrapped, dtype=float)
        flat = arr.reshape(-1)

        if flat.size == 0:
            return arr.astype(float)

        mu_val = _vmft_ensure_scalar(mu, "mu")
        kappa_val = float(np.clip(_vmft_ensure_scalar(kappa, "kappa"), 0.0, _VMFT_KAPPA_UPPER))
        nu_val = _vmft_ensure_scalar(nu, "nu")

        if not np.isfinite(mu_val) or not np.isfinite(kappa_val) or not np.isfinite(nu_val):
            return np.full_like(arr, np.nan, dtype=float)

        two_pi = 2.0 * np.pi

        if kappa_val <= _VMFT_KAPPA_TOL:
            cdf_flat = flat / two_pi
        else:
            table = self._get_vmft_table(kappa_val, nu_val)
            phi = ((flat - mu_val + np.pi) % two_pi) - np.pi
            phi_start = ((-mu_val + np.pi) % two_pi) - np.pi
            H = table["cdf_interp"](phi)
            H_start = float(table["cdf_interp"](phi_start))
            cdf_flat = np.where(H < H_start, H - H_start + 1.0, H - H_start)
            cdf_flat = np.clip(cdf_flat, 0.0, 1.0)

        if arr.ndim == 0:
            value = float(cdf_flat[0])
            if np.isclose(float(wrapped), two_pi, rtol=0.0, atol=1e-12):
                return 1.0
            return value

        result = cdf_flat.reshape(arr.shape)
        mask_upper = np.isclose(arr, two_pi, rtol=0.0, atol=1e-12)
        if np.any(mask_upper):
            result = result.copy()
            result[mask_upper] = 1.0
        return result

    def _ppf(self, q, mu, kappa, nu):
        mu_val = _vmft_ensure_scalar(mu, "mu")
        kappa_val = _vmft_ensure_scalar(kappa, "kappa")
        nu_val = _vmft_ensure_scalar(nu, "nu")

        q_arr = np.asarray(q, dtype=float)
        flat = q_arr.reshape(-1)
        if flat.size == 0:
            return q_arr.astype(float)

        if not np.isfinite(mu_val) or not np.isfinite(kappa_val) or not np.isfinite(nu_val):
            return np.full_like(q_arr, np.nan, dtype=float)

        two_pi = 2.0 * np.pi
        result = np.full_like(flat, np.nan, dtype=float)

        valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0)
        if not np.any(valid):
            shaped = result.reshape(q_arr.shape)
            return float(shaped) if q_arr.ndim == 0 else shaped

        q_valid = flat[valid]
        close_zero = np.isclose(q_valid, 0.0, rtol=0.0, atol=1e-12)
        close_one = np.isclose(q_valid, 1.0, rtol=0.0, atol=1e-12)

        if kappa_val <= _VMFT_KAPPA_TOL:
            theta = (two_pi * q_valid) % two_pi
            if np.any(close_zero):
                theta[close_zero] = 0.0
            if np.any(close_one):
                theta[close_one] = two_pi
            result[valid] = theta
        else:
            table = self._get_vmft_table(kappa_val, nu_val)
            phi_grid = table["phi"]
            cdf_grid = table["cdf"]
            cdf_interp = table["cdf_interp"]
            inv_interp = table["inv_cdf_interp"]

            phi_start = ((-mu_val + np.pi) % two_pi) - np.pi
            H_start = float(cdf_interp(phi_start))

            # Prepare bracket indices for each quantile
            targets = (H_start + q_valid) % 1.0
            phi_guess = (
                inv_interp(targets)
                if inv_interp is not None
                else np.interp(targets, cdf_grid, phi_grid, left=phi_grid[0], right=phi_grid[-1])
            )

            theta = np.empty_like(q_valid)
            for idx, (q_val, target, phi0) in enumerate(zip(q_valid, targets, phi_guess)):
                if close_zero[idx]:
                    theta[idx] = 0.0
                    continue
                if close_one[idx]:
                    theta[idx] = two_pi
                    continue

                i_hi = int(np.clip(np.searchsorted(cdf_grid, target, side="right"), 1, len(phi_grid) - 1))
                phi_lo = float(phi_grid[i_hi - 1])
                phi_hi = float(phi_grid[i_hi])
                phi = float(np.clip(phi0, phi_lo, phi_hi))

                for _ in range(_VMFT_NEWTON_MAXITER):
                    H_phi = float(cdf_interp(phi))
                    residual = H_phi - target
                    derivative = np.exp(
                        kappa_val * np.cos(phi + nu_val * np.sin(phi)) + table["log_normalizer"]
                    )
                    derivative = max(derivative, np.finfo(float).tiny)

                    if abs(residual) <= _VMFT_NEWTON_TOL and (phi_hi - phi_lo) <= _VMFT_NEWTON_WIDTH_TOL:
                        break

                    if residual > 0.0:
                        phi_hi = min(phi_hi, phi)
                    else:
                        phi_lo = max(phi_lo, phi)

                    step = residual / derivative
                    phi_candidate = phi - step
                    if not np.isfinite(phi_candidate) or phi_candidate <= phi_lo or phi_candidate >= phi_hi:
                        phi_candidate = 0.5 * (phi_lo + phi_hi)
                    phi = float(np.clip(phi_candidate, phi_lo, phi_hi))

                theta[idx] = (mu_val + phi) % two_pi

            result[valid] = theta

        shaped = result.reshape(q_arr.shape)
        if q_arr.ndim == 0:
            return float(shaped)
        return shaped

    def ppf(self, q, mu, kappa, nu, *args, **kwargs):
        r"""
        Percent-point function (quantile) of the flat-topped von Mises distribution.

        Quantiles are computed by reusing the cached cumulative table described in
        `cdf`. Starting from the monotone inverse of the tabulated primitive
        $H_{\kappa,\nu}$, the implementation applies up to
        :data:`_VMFT_NEWTON_MAXITER` safeguarded Newton steps with derivative
        $f(\theta) = \exp[\kappa \cos(\phi + \nu \sin \phi)]/Z$ to achieve
        machine-precision agreement (dual stopping on residual and bracket width).
        Boundary quantiles default to the support endpoints $0$ and $2\pi$.

        Parameters
        ----------
        q : array_like
            Quantiles to evaluate (0 <= q <= 1).
        mu : float
            Location parameter, $0 \le \mu \le 2\pi$.
        kappa : float
            Concentration parameter, $\kappa \ge 0$.
        nu : float
            Shape parameter, $-1 \le \nu \le 1$.

        Returns
        -------
        ppf_values : array_like
            Angles corresponding to the probabilities in `q`.
        """
        mu_val = _vmft_ensure_scalar(mu, "mu")
        kappa_val = _vmft_ensure_scalar(kappa, "kappa")
        nu_val = _vmft_ensure_scalar(nu, "nu")
        return super().ppf(q, mu_val, kappa_val, nu_val, *args, **kwargs)

    def _rvs(self, mu, kappa, nu, size=None, random_state=None):
        rng = self._init_rng(random_state)

        mu_val = _vmft_ensure_scalar(mu, "mu") % (2.0 * np.pi)
        kappa_val = float(np.clip(_vmft_ensure_scalar(kappa, "kappa"), 0.0, _VMFT_KAPPA_UPPER))
        nu_val = _vmft_ensure_scalar(nu, "nu")

        if not np.isfinite(mu_val) or not np.isfinite(kappa_val) or not np.isfinite(nu_val):
            raise ValueError("`mu`, `kappa`, and `nu` must be finite scalars.")

        if size is None:
            shape = ()
            total = 1
        else:
            if np.isscalar(size):
                shape = (int(size),)
            else:
                shape = tuple(int(dim) for dim in np.atleast_1d(size))
            total = int(np.prod(shape, dtype=int))
            if total < 0:
                raise ValueError("`size` must describe a non-negative number of samples.")
        two_pi = 2.0 * np.pi

        if total == 0:
            empty = np.empty(shape, dtype=float)
            return float(empty) if empty.ndim == 0 else empty

        if kappa_val <= _VMFT_KAPPA_TOL:
            samples = rng.uniform(0.0, two_pi, size=shape)
            if samples.ndim == 0:
                return float(samples)
            return samples

        table = self._get_vmft_table(kappa_val, nu_val)
        sampler_params = self._get_vmft_sampler_params(kappa_val, nu_val)
        kappa_env = sampler_params["kappa_env"]
        log_env_norm = sampler_params["log_env_norm"]
        log_multiplier = sampler_params["log_multiplier"]

        samples = np.empty(total, dtype=float)
        filled = 0
        batch_base = max(8, min(4 * total, 4096))

        while filled < total:
            batch = min(batch_base, total - filled) if filled > 0 else batch_base
            proposals = rng.vonmises(mu_val, kappa_env, size=batch)
            phi = ((proposals - mu_val + np.pi) % two_pi) - np.pi

            log_target = kappa_val * np.cos(phi + nu_val * np.sin(phi)) + table["log_normalizer"]
            log_env = kappa_env * np.cos(phi) - log_env_norm
            log_accept = log_target - log_env - log_multiplier

            accept_mask = np.log(rng.random(size=batch)) <= log_accept
            if not np.any(accept_mask):
                continue

            accepted = proposals[accept_mask]
            take = min(accepted.size, total - filled)
            samples[filled : filled + take] = accepted[:take]
            filled += take

        samples = np.mod(samples, two_pi)
        samples = samples.reshape(shape)
        if samples.ndim == 0:
            return float(samples)
        return samples

    def rvs(self, mu=None, kappa=None, nu=None, size=None, random_state=None):
        r"""
        Draw random variates from the flat-topped von Mises distribution.

        Sampling uses an acceptance–rejection scheme with a curvature-matched
        von Mises envelope. Writing $\phi = \theta - \mu$ and matching the
        curvature at the mode yields a proposal concentration
        $\kappa_e = \kappa(1+\nu)^2$ (clipped to a small positive value). The
        envelope constant $M \ge \sup_\phi f(\phi)/g(\phi)$ is precomputed on
        the same spectral grid used for `cdf`, so once calibrated the
        sampler draws each variate with a single von Mises proposal followed by
        a scalar acceptance test.

        Parameters
        ----------
        mu : float
            Location parameter, $0 \le \mu \le 2\pi$.
        kappa : float
            Concentration parameter, $\kappa \ge 0$.
        nu : float
            Shape parameter, $-1 \le \nu \le 1$.
        size : int or tuple of ints, optional
            Output shape.
        random_state : {None, int, np.random.Generator}, optional
            Random number generator specification.

        Returns
        -------
        rvs : array_like
            Random variates on $[0, 2\pi)$.
        """
        return super().rvs(mu, kappa, nu, size=size, random_state=random_state)

    def fit(
        self,
        data,
        *,
        weights=None,
        method="mle",
        optimizer="L-BFGS-B",
        options=None,
        nu_grid=None,
        kappa_bounds=(1e-6, _VMFT_KAPPA_UPPER),
        nu_bounds=(-0.99, 0.99),
        return_info=False,
        **minimize_kwargs,
    ):
        r"""
        Estimate $(\mu, \kappa, \nu)$ from circular data.

        The default ``method='mle'`` maximises the weighted log-likelihood

        $$
        \ell(\mu, \kappa, \nu) = \sum_i w_i
        \left[
            \kappa \cos(\phi_i + \nu \sin \phi_i) - \log Z(\kappa, \nu)
        \right],\quad
        \phi_i = (\theta_i - \mu) \bmod 2\pi,
        $$

        where $Z$ is the normalising constant reused from the cached spectral
        table. The routine initialises $(\mu, \kappa)$ from the first trigonometric
        moment and profiles a small grid for $\nu$ before bounded optimisation
        (default L-BFGS-B) with $\kappa \in$ ``kappa_bounds`` and
        $\nu \in$ ``nu_bounds``.

        Parameters
        ----------
        data : array_like
            Sample of angles.
        weights : array_like, optional
            Non-negative weights broadcastable to ``data``.
        method : {'mle', 'moments'}, default 'mle'
            Estimation method. ``'moments'`` returns the circular mean,
            ``circ_kappa``, and $\nu=0$.
        optimizer : str, optional
            SciPy optimiser to use when ``method='mle'``.
        options : dict, optional
            Optimiser options forwarded to :func:`scipy.optimize.minimize`.
        nu_grid : array_like, optional
            Candidate $\nu$ values for initial profiling. Defaults to a small grid
            spanning ``nu_bounds``.
        kappa_bounds : tuple, optional
            Lower/upper bounds for $\kappa$ during optimisation.
        nu_bounds : tuple, optional
            Lower/upper bounds for $\nu$ during optimisation.
        return_info : bool, optional
            If True, also return a dictionary with optimisation diagnostics.
        **minimize_kwargs :
            Additional keyword arguments passed to :func:`scipy.optimize.minimize`.

        Returns
        -------
        params : tuple
            Estimated parameters ``(mu, kappa, nu)``.
        info : dict, optional
            Returned when ``return_info=True`` with fields such as ``loglik``,
            ``n_effective`` and ``converged``.
        """

        minimize_kwargs = self._sanitize_fit_kwargs(minimize_kwargs)
        minimize_kwargs.pop("floc", None)
        minimize_kwargs.pop("fscale", None)

        data_arr = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
        if data_arr.size == 0:
            raise ValueError("`data` must contain at least one observation.")

        if weights is None:
            w = np.ones_like(data_arr, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            if np.any(w < 0):
                raise ValueError("`weights` must be non-negative.")
            w = np.broadcast_to(w, data_arr.shape).astype(float, copy=False).ravel()

        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0.0:
            raise ValueError("Sum of weights must be positive.")
        n_eff = float(w_sum**2 / np.sum(w**2))

        mu_mom, r1 = circ_mean_and_r(alpha=data_arr, w=w)
        if not np.isfinite(mu_mom):
            mu_mom = 0.0
        mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
        r1 = float(np.clip(r1, 1e-12, 1.0 - 1e-12))

        n_adjust = int(max(1, round(w_sum)))
        kappa_mom = float(np.clip(circ_kappa(r=r1, n=n_adjust), kappa_bounds[0], kappa_bounds[1]))

        if nu_grid is None:
            lower_nu = float(max(nu_bounds[0], -0.9))
            upper_nu = float(min(nu_bounds[1], 0.9))
            nu_grid = np.linspace(lower_nu, upper_nu, 7)
        else:
            nu_grid = np.asarray(nu_grid, dtype=float)

        def nll(params):
            mu_param, kappa_param, nu_param = params

            if not (0.0 <= mu_param <= 2.0 * np.pi):
                return np.inf
            if not (kappa_bounds[0] <= kappa_param <= kappa_bounds[1]):
                return np.inf
            if not (nu_bounds[0] <= nu_param <= nu_bounds[1]):
                return np.inf

            mu_wrapped = float(np.mod(mu_param, 2.0 * np.pi))
            two_pi = 2.0 * np.pi
            phi = ((data_arr - mu_wrapped + np.pi) % two_pi) - np.pi

            if kappa_param <= _VMFT_KAPPA_TOL:
                log_pdf = -np.log(two_pi)
                return float(-np.sum(w * log_pdf))

            table = self._get_vmft_table(float(kappa_param), float(nu_param))

            log_kernel = kappa_param * np.cos(phi + nu_param * np.sin(phi))
            log_pdf = log_kernel + table["log_normalizer"]
            if not np.all(np.isfinite(log_pdf)):
                return np.inf
            return float(-np.sum(w * log_pdf))

        method_key = str(method).lower()

        if method_key == "moments":
            estimates = (mu_mom, kappa_mom, 0.0)
            if return_info:
                info = {
                    "method": "moments",
                    "converged": True,
                    "loglik": float(-nll(estimates)),
                    "n_effective": n_eff,
                }
                return estimates, info
            return estimates

        if method_key != "mle":
            raise ValueError("`method` must be one of {'mle', 'moments'}.")

        best_nu = 0.0
        best_score = nll((mu_mom, kappa_mom, best_nu))
        for candidate in np.unique(np.concatenate(([0.0], nu_grid))):
            score = nll((mu_mom, kappa_mom, float(candidate)))
            if score < best_score:
                best_score = score
                best_nu = float(candidate)

        init = np.array([mu_mom, kappa_mom, best_nu], dtype=float)
        bounds = [
            (0.0, 2.0 * np.pi),
            (kappa_bounds[0], kappa_bounds[1]),
            (nu_bounds[0], nu_bounds[1]),
        ]

        options = {} if options is None else dict(options)

        optimizer_used = optimizer

        result = minimize(
            nll,
            init,
            method=optimizer,
            bounds=bounds,
            options=options,
            **minimize_kwargs,
        )

        if not result.success and optimizer != "Powell":
            fallback = minimize(
                nll,
                init,
                method="Powell",
                bounds=bounds,
                options={},
                **minimize_kwargs,
            )
            if fallback.success:
                result = fallback
                optimizer_used = "Powell"

        if not result.success:
            raise RuntimeError(f"Maximum likelihood fit failed: {result.message}")

        mu_hat = self._wrap_direction(float(result.x[0]))
        kappa_hat = float(np.clip(result.x[1], kappa_bounds[0], kappa_bounds[1]))
        nu_hat = float(np.clip(result.x[2], nu_bounds[0], nu_bounds[1]))

        estimates = (mu_hat, kappa_hat, nu_hat)
        if not return_info:
            return estimates

        info = {
            "method": "mle",
            "loglik": float(-result.fun),
            "n_effective": n_eff,
            "converged": bool(result.success),
            "optimizer": optimizer_used,
            "nit": getattr(result, "nit", np.nan),
            "nfev": getattr(result, "nfev", np.nan),
            "message": result.message,
        }
        return estimates, info

    def cdf(self, x, mu, kappa, nu, *args, **kwargs):
        r"""
        Cumulative distribution function of the flat-topped von Mises distribution.

        Let $\phi = (\theta - \mu) \bmod 2\pi$ re-centred onto $[-\pi, \pi]$ and
        $g_{\kappa,\nu}(\phi) = \exp\!\bigl[\kappa \cos(\phi + \nu \sin \phi)\bigr]$.
        The normalised primitive
        $$
        H_{\kappa,\nu}(\phi) = \frac{1}{Z} \int_{-\pi}^{\phi} g_{\kappa,\nu}(t)\,dt,
        \qquad Z = \int_{-\pi}^{\pi} g_{\kappa,\nu}(t)\,dt,
        $$
        is approximated with spectral accuracy by a trapezoidal rule on an
        equispaced grid (size selected from $O(\sqrt{\kappa})$). The CDF on
        $[0, 2\pi)$ then follows from $F(\theta) = H_{\kappa,\nu}(\phi) -
        H_{\kappa,\nu}(\phi_0)$ with $\phi_0 = ((-\mu) \bmod 2\pi) - \pi$. The
        precomputed cumulative grid is cached per $(\kappa, \nu)$, so repeated
        evaluations are $O(1)$ once the table is built.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            Location parameter, $0 \le \mu \le 2\pi$.
        kappa : float
            Concentration parameter, $\kappa \ge 0$ (capped internally at
            :data:`_VMFT_KAPPA_UPPER` for numerical stability).
        nu : float
            Shape parameter, $-1 \le \nu \le 1$.

        Returns
        -------
        cdf_values : array_like
            Cumulative probabilities corresponding to `x`.
        """
        mu_val = _vmft_ensure_scalar(mu, "mu")
        kappa_val = _vmft_ensure_scalar(kappa, "kappa")
        nu_val = _vmft_ensure_scalar(nu, "nu")
        return super().cdf(x, mu_val, kappa_val, nu_val, *args, **kwargs)

    def _get_vmft_table(self, kappa, nu, grid_size=None):
        kappa_val = float(kappa)
        nu_val = float(nu)
        if grid_size is None:
            grid_size = _vmft_grid_size(kappa_val, nu_val)
        grid_int = int(grid_size)
        key = (kappa_val, nu_val, grid_int)
        table = self._vmft_table_cache.get(key)
        if table is None:
            table = _vmft_build_table(kappa_val, nu_val, grid_int)
            self._vmft_table_cache[key] = table
        return table

    def _get_vmft_sampler_params(self, kappa, nu):
        key = (float(kappa), float(nu))
        params = self._vmft_sampler_cache.get(key)
        if params is not None:
            return params

        table = self._get_vmft_table(kappa, nu)
        kappa_env = float(np.clip(kappa * (1.0 + nu) ** 2, _VMFT_ENV_MIN_KAPPA, _VMFT_KAPPA_UPPER))

        log_env_norm = (
            np.log(2.0 * np.pi)
            + np.log(i0e(kappa_env))
            + kappa_env
        )
        log_env_pdf = kappa_env * np.cos(table["phi"]) - log_env_norm
        log_ratio = np.log(table["pdf"]) - log_env_pdf
        log_multiplier = float(np.max(log_ratio))
        multiplier = float(np.exp(log_multiplier) * (1.0 + 5e-12))

        params = {
            "kappa_env": kappa_env,
            "log_env_norm": float(log_env_norm),
            "log_multiplier": float(np.log(multiplier)),
            "multiplier": multiplier,
        }
        self._vmft_sampler_cache[key] = params
        return params

pdf(x, mu, kappa, nu, *args, **kwargs)

Probability density function of the Flat-topped von Mises distribution.

\[ f(\theta) = c \exp(\kappa \cos(\theta - \mu + \nu \sin(\theta - \mu))) \]

, where c is the normalizing constant:

\[ c = \frac{1}{\int_{-\pi}^{\pi} \exp(\kappa \cos(\theta - \mu + \nu \sin(\theta - \mu))) d\theta} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the PDF, defined on the interval \([0, 2\pi)\).

required
mu float

Location parameter, \(0 \leq \mu \leq 2\pi\). This is the mean direction when \(\nu = 0\).

required
kappa float

Concentration parameter, \(\kappa \geq 0\). Higher values indicate a sharper peak around \(\mu\).

required
nu float

Shape parameter, \(-1 \leq \nu \leq 1\). Controls the flattening or sharpening of the peak: - \(\nu > 0\): sharper peaks. - \(\nu < 0\): flatter peaks.

required

Returns:

Name Type Description
pdf_values array_like

Values of the probability density function at the specified points.

Notes
  • The normalization constant \(c\) is computed numerically, as the integral generally does not have a closed-form solution.
  • Special cases:
    • When \(\nu = 0\), the distribution reduces to the standard von Mises distribution.
    • When \(\kappa = 0\), the distribution becomes uniform on \([0, 2\pi)\).
Source code in pycircstat2/distributions.py
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
def pdf(self, x, mu, kappa, nu, *args, **kwargs):
    r"""
    Probability density function of the Flat-topped von Mises distribution.

    $$
    f(\theta) = c \exp(\kappa \cos(\theta - \mu + \nu \sin(\theta - \mu)))
    $$

    , where `c` is the normalizing constant:

    $$
    c = \frac{1}{\int_{-\pi}^{\pi} \exp(\kappa \cos(\theta - \mu + \nu \sin(\theta - \mu))) d\theta}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
    mu : float
        Location parameter, $0 \leq \mu \leq 2\pi$. This is the mean direction when $\nu = 0$.
    kappa : float
        Concentration parameter, $\kappa \geq 0$. Higher values indicate a sharper peak around $\mu$.
    nu : float
        Shape parameter, $-1 \leq \nu \leq 1$. Controls the flattening or sharpening of the peak:
        - $\nu > 0$: sharper peaks.
        - $\nu < 0$: flatter peaks.

    Returns
    -------
    pdf_values : array_like
        Values of the probability density function at the specified points.


    Notes
    -----
    - The normalization constant $c$ is computed numerically, as the integral generally
    does not have a closed-form solution.
    - Special cases:
        - When $\nu = 0$, the distribution reduces to the standard von Mises distribution.
        - When $\kappa = 0$, the distribution becomes uniform on $[0, 2\pi)$.
    """
    mu_val = _vmft_ensure_scalar(mu, "mu")
    kappa_val = float(np.clip(_vmft_ensure_scalar(kappa, "kappa"), 0.0, _VMFT_KAPPA_UPPER))
    nu_val = _vmft_ensure_scalar(nu, "nu")
    return super().pdf(x, mu_val, kappa_val, nu_val, *args, **kwargs)

ppf(q, mu, kappa, nu, *args, **kwargs)

Percent-point function (quantile) of the flat-topped von Mises distribution.

Quantiles are computed by reusing the cached cumulative table described in cdf. Starting from the monotone inverse of the tabulated primitive \(H_{\kappa,\nu}\), the implementation applies up to :data:_VMFT_NEWTON_MAXITER safeguarded Newton steps with derivative \(f(\theta) = \exp[\kappa \cos(\phi + \nu \sin \phi)]/Z\) to achieve machine-precision agreement (dual stopping on residual and bracket width). Boundary quantiles default to the support endpoints \(0\) and \(2\pi\).

Parameters:

Name Type Description Default
q array_like

Quantiles to evaluate (0 <= q <= 1).

required
mu float

Location parameter, \(0 \le \mu \le 2\pi\).

required
kappa float

Concentration parameter, \(\kappa \ge 0\).

required
nu float

Shape parameter, \(-1 \le \nu \le 1\).

required

Returns:

Name Type Description
ppf_values array_like

Angles corresponding to the probabilities in q.

Source code in pycircstat2/distributions.py
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
def ppf(self, q, mu, kappa, nu, *args, **kwargs):
    r"""
    Percent-point function (quantile) of the flat-topped von Mises distribution.

    Quantiles are computed by reusing the cached cumulative table described in
    `cdf`. Starting from the monotone inverse of the tabulated primitive
    $H_{\kappa,\nu}$, the implementation applies up to
    :data:`_VMFT_NEWTON_MAXITER` safeguarded Newton steps with derivative
    $f(\theta) = \exp[\kappa \cos(\phi + \nu \sin \phi)]/Z$ to achieve
    machine-precision agreement (dual stopping on residual and bracket width).
    Boundary quantiles default to the support endpoints $0$ and $2\pi$.

    Parameters
    ----------
    q : array_like
        Quantiles to evaluate (0 <= q <= 1).
    mu : float
        Location parameter, $0 \le \mu \le 2\pi$.
    kappa : float
        Concentration parameter, $\kappa \ge 0$.
    nu : float
        Shape parameter, $-1 \le \nu \le 1$.

    Returns
    -------
    ppf_values : array_like
        Angles corresponding to the probabilities in `q`.
    """
    mu_val = _vmft_ensure_scalar(mu, "mu")
    kappa_val = _vmft_ensure_scalar(kappa, "kappa")
    nu_val = _vmft_ensure_scalar(nu, "nu")
    return super().ppf(q, mu_val, kappa_val, nu_val, *args, **kwargs)

rvs(mu=None, kappa=None, nu=None, size=None, random_state=None)

Draw random variates from the flat-topped von Mises distribution.

Sampling uses an acceptance–rejection scheme with a curvature-matched von Mises envelope. Writing \(\phi = \theta - \mu\) and matching the curvature at the mode yields a proposal concentration \(\kappa_e = \kappa(1+\nu)^2\) (clipped to a small positive value). The envelope constant \(M \ge \sup_\phi f(\phi)/g(\phi)\) is precomputed on the same spectral grid used for cdf, so once calibrated the sampler draws each variate with a single von Mises proposal followed by a scalar acceptance test.

Parameters:

Name Type Description Default
mu float

Location parameter, \(0 \le \mu \le 2\pi\).

None
kappa float

Concentration parameter, \(\kappa \ge 0\).

None
nu float

Shape parameter, \(-1 \le \nu \le 1\).

None
size int or tuple of ints

Output shape.

None
random_state (None, int, Generator)

Random number generator specification.

None

Returns:

Name Type Description
rvs array_like

Random variates on \([0, 2\pi)\).

Source code in pycircstat2/distributions.py
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
def rvs(self, mu=None, kappa=None, nu=None, size=None, random_state=None):
    r"""
    Draw random variates from the flat-topped von Mises distribution.

    Sampling uses an acceptance–rejection scheme with a curvature-matched
    von Mises envelope. Writing $\phi = \theta - \mu$ and matching the
    curvature at the mode yields a proposal concentration
    $\kappa_e = \kappa(1+\nu)^2$ (clipped to a small positive value). The
    envelope constant $M \ge \sup_\phi f(\phi)/g(\phi)$ is precomputed on
    the same spectral grid used for `cdf`, so once calibrated the
    sampler draws each variate with a single von Mises proposal followed by
    a scalar acceptance test.

    Parameters
    ----------
    mu : float
        Location parameter, $0 \le \mu \le 2\pi$.
    kappa : float
        Concentration parameter, $\kappa \ge 0$.
    nu : float
        Shape parameter, $-1 \le \nu \le 1$.
    size : int or tuple of ints, optional
        Output shape.
    random_state : {None, int, np.random.Generator}, optional
        Random number generator specification.

    Returns
    -------
    rvs : array_like
        Random variates on $[0, 2\pi)$.
    """
    return super().rvs(mu, kappa, nu, size=size, random_state=random_state)

fit(data, *, weights=None, method='mle', optimizer='L-BFGS-B', options=None, nu_grid=None, kappa_bounds=(1e-06, _VMFT_KAPPA_UPPER), nu_bounds=(-0.99, 0.99), return_info=False, **minimize_kwargs)

Estimate \((\mu, \kappa, \nu)\) from circular data.

The default method='mle' maximises the weighted log-likelihood

\[ \ell(\mu, \kappa, \nu) = \sum_i w_i \left[ \kappa \cos(\phi_i + \nu \sin \phi_i) - \log Z(\kappa, \nu) \right],\quad \phi_i = (\theta_i - \mu) \bmod 2\pi, \]

where \(Z\) is the normalising constant reused from the cached spectral table. The routine initialises \((\mu, \kappa)\) from the first trigonometric moment and profiles a small grid for \(\nu\) before bounded optimisation (default L-BFGS-B) with \(\kappa \in\) kappa_bounds and \(\nu \in\) nu_bounds.

Parameters:

Name Type Description Default
data array_like

Sample of angles.

required
weights array_like

Non-negative weights broadcastable to data.

None
method (mle, moments)

Estimation method. 'moments' returns the circular mean, circ_kappa, and \(\nu=0\).

'mle'
optimizer str

SciPy optimiser to use when method='mle'.

'L-BFGS-B'
options dict

Optimiser options forwarded to :func:scipy.optimize.minimize.

None
nu_grid array_like

Candidate \(\nu\) values for initial profiling. Defaults to a small grid spanning nu_bounds.

None
kappa_bounds tuple

Lower/upper bounds for \(\kappa\) during optimisation.

(1e-06, _VMFT_KAPPA_UPPER)
nu_bounds tuple

Lower/upper bounds for \(\nu\) during optimisation.

(-0.99, 0.99)
return_info bool

If True, also return a dictionary with optimisation diagnostics.

False
**minimize_kwargs

Additional keyword arguments passed to :func:scipy.optimize.minimize.

{}

Returns:

Name Type Description
params tuple

Estimated parameters (mu, kappa, nu).

info (dict, optional)

Returned when return_info=True with fields such as loglik, n_effective and converged.

Source code in pycircstat2/distributions.py
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
def fit(
    self,
    data,
    *,
    weights=None,
    method="mle",
    optimizer="L-BFGS-B",
    options=None,
    nu_grid=None,
    kappa_bounds=(1e-6, _VMFT_KAPPA_UPPER),
    nu_bounds=(-0.99, 0.99),
    return_info=False,
    **minimize_kwargs,
):
    r"""
    Estimate $(\mu, \kappa, \nu)$ from circular data.

    The default ``method='mle'`` maximises the weighted log-likelihood

    $$
    \ell(\mu, \kappa, \nu) = \sum_i w_i
    \left[
        \kappa \cos(\phi_i + \nu \sin \phi_i) - \log Z(\kappa, \nu)
    \right],\quad
    \phi_i = (\theta_i - \mu) \bmod 2\pi,
    $$

    where $Z$ is the normalising constant reused from the cached spectral
    table. The routine initialises $(\mu, \kappa)$ from the first trigonometric
    moment and profiles a small grid for $\nu$ before bounded optimisation
    (default L-BFGS-B) with $\kappa \in$ ``kappa_bounds`` and
    $\nu \in$ ``nu_bounds``.

    Parameters
    ----------
    data : array_like
        Sample of angles.
    weights : array_like, optional
        Non-negative weights broadcastable to ``data``.
    method : {'mle', 'moments'}, default 'mle'
        Estimation method. ``'moments'`` returns the circular mean,
        ``circ_kappa``, and $\nu=0$.
    optimizer : str, optional
        SciPy optimiser to use when ``method='mle'``.
    options : dict, optional
        Optimiser options forwarded to :func:`scipy.optimize.minimize`.
    nu_grid : array_like, optional
        Candidate $\nu$ values for initial profiling. Defaults to a small grid
        spanning ``nu_bounds``.
    kappa_bounds : tuple, optional
        Lower/upper bounds for $\kappa$ during optimisation.
    nu_bounds : tuple, optional
        Lower/upper bounds for $\nu$ during optimisation.
    return_info : bool, optional
        If True, also return a dictionary with optimisation diagnostics.
    **minimize_kwargs :
        Additional keyword arguments passed to :func:`scipy.optimize.minimize`.

    Returns
    -------
    params : tuple
        Estimated parameters ``(mu, kappa, nu)``.
    info : dict, optional
        Returned when ``return_info=True`` with fields such as ``loglik``,
        ``n_effective`` and ``converged``.
    """

    minimize_kwargs = self._sanitize_fit_kwargs(minimize_kwargs)
    minimize_kwargs.pop("floc", None)
    minimize_kwargs.pop("fscale", None)

    data_arr = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
    if data_arr.size == 0:
        raise ValueError("`data` must contain at least one observation.")

    if weights is None:
        w = np.ones_like(data_arr, dtype=float)
    else:
        w = np.asarray(weights, dtype=float)
        if np.any(w < 0):
            raise ValueError("`weights` must be non-negative.")
        w = np.broadcast_to(w, data_arr.shape).astype(float, copy=False).ravel()

    w_sum = float(np.sum(w))
    if not np.isfinite(w_sum) or w_sum <= 0.0:
        raise ValueError("Sum of weights must be positive.")
    n_eff = float(w_sum**2 / np.sum(w**2))

    mu_mom, r1 = circ_mean_and_r(alpha=data_arr, w=w)
    if not np.isfinite(mu_mom):
        mu_mom = 0.0
    mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
    r1 = float(np.clip(r1, 1e-12, 1.0 - 1e-12))

    n_adjust = int(max(1, round(w_sum)))
    kappa_mom = float(np.clip(circ_kappa(r=r1, n=n_adjust), kappa_bounds[0], kappa_bounds[1]))

    if nu_grid is None:
        lower_nu = float(max(nu_bounds[0], -0.9))
        upper_nu = float(min(nu_bounds[1], 0.9))
        nu_grid = np.linspace(lower_nu, upper_nu, 7)
    else:
        nu_grid = np.asarray(nu_grid, dtype=float)

    def nll(params):
        mu_param, kappa_param, nu_param = params

        if not (0.0 <= mu_param <= 2.0 * np.pi):
            return np.inf
        if not (kappa_bounds[0] <= kappa_param <= kappa_bounds[1]):
            return np.inf
        if not (nu_bounds[0] <= nu_param <= nu_bounds[1]):
            return np.inf

        mu_wrapped = float(np.mod(mu_param, 2.0 * np.pi))
        two_pi = 2.0 * np.pi
        phi = ((data_arr - mu_wrapped + np.pi) % two_pi) - np.pi

        if kappa_param <= _VMFT_KAPPA_TOL:
            log_pdf = -np.log(two_pi)
            return float(-np.sum(w * log_pdf))

        table = self._get_vmft_table(float(kappa_param), float(nu_param))

        log_kernel = kappa_param * np.cos(phi + nu_param * np.sin(phi))
        log_pdf = log_kernel + table["log_normalizer"]
        if not np.all(np.isfinite(log_pdf)):
            return np.inf
        return float(-np.sum(w * log_pdf))

    method_key = str(method).lower()

    if method_key == "moments":
        estimates = (mu_mom, kappa_mom, 0.0)
        if return_info:
            info = {
                "method": "moments",
                "converged": True,
                "loglik": float(-nll(estimates)),
                "n_effective": n_eff,
            }
            return estimates, info
        return estimates

    if method_key != "mle":
        raise ValueError("`method` must be one of {'mle', 'moments'}.")

    best_nu = 0.0
    best_score = nll((mu_mom, kappa_mom, best_nu))
    for candidate in np.unique(np.concatenate(([0.0], nu_grid))):
        score = nll((mu_mom, kappa_mom, float(candidate)))
        if score < best_score:
            best_score = score
            best_nu = float(candidate)

    init = np.array([mu_mom, kappa_mom, best_nu], dtype=float)
    bounds = [
        (0.0, 2.0 * np.pi),
        (kappa_bounds[0], kappa_bounds[1]),
        (nu_bounds[0], nu_bounds[1]),
    ]

    options = {} if options is None else dict(options)

    optimizer_used = optimizer

    result = minimize(
        nll,
        init,
        method=optimizer,
        bounds=bounds,
        options=options,
        **minimize_kwargs,
    )

    if not result.success and optimizer != "Powell":
        fallback = minimize(
            nll,
            init,
            method="Powell",
            bounds=bounds,
            options={},
            **minimize_kwargs,
        )
        if fallback.success:
            result = fallback
            optimizer_used = "Powell"

    if not result.success:
        raise RuntimeError(f"Maximum likelihood fit failed: {result.message}")

    mu_hat = self._wrap_direction(float(result.x[0]))
    kappa_hat = float(np.clip(result.x[1], kappa_bounds[0], kappa_bounds[1]))
    nu_hat = float(np.clip(result.x[2], nu_bounds[0], nu_bounds[1]))

    estimates = (mu_hat, kappa_hat, nu_hat)
    if not return_info:
        return estimates

    info = {
        "method": "mle",
        "loglik": float(-result.fun),
        "n_effective": n_eff,
        "converged": bool(result.success),
        "optimizer": optimizer_used,
        "nit": getattr(result, "nit", np.nan),
        "nfev": getattr(result, "nfev", np.nan),
        "message": result.message,
    }
    return estimates, info

cdf(x, mu, kappa, nu, *args, **kwargs)

Cumulative distribution function of the flat-topped von Mises distribution.

Let \(\phi = (\theta - \mu) \bmod 2\pi\) re-centred onto \([-\pi, \pi]\) and \(g_{\kappa,\nu}(\phi) = \exp\!\bigl[\kappa \cos(\phi + \nu \sin \phi)\bigr]\). The normalised primitive $$ H_{\kappa,\nu}(\phi) = \frac{1}{Z} \int_{-\pi}^{\phi} g_{\kappa,\nu}(t)\,dt, \qquad Z = \int_{-\pi}^{\pi} g_{\kappa,\nu}(t)\,dt, $$ is approximated with spectral accuracy by a trapezoidal rule on an equispaced grid (size selected from \(O(\sqrt{\kappa})\)). The CDF on \([0, 2\pi)\) then follows from \(F(\theta) = H_{\kappa,\nu}(\phi) - H_{\kappa,\nu}(\phi_0)\) with \(\phi_0 = ((-\mu) \bmod 2\pi) - \pi\). The precomputed cumulative grid is cached per \((\kappa, \nu)\), so repeated evaluations are \(O(1)\) once the table is built.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

Location parameter, \(0 \le \mu \le 2\pi\).

required
kappa float

Concentration parameter, \(\kappa \ge 0\) (capped internally at :data:_VMFT_KAPPA_UPPER for numerical stability).

required
nu float

Shape parameter, \(-1 \le \nu \le 1\).

required

Returns:

Name Type Description
cdf_values array_like

Cumulative probabilities corresponding to x.

Source code in pycircstat2/distributions.py
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
def cdf(self, x, mu, kappa, nu, *args, **kwargs):
    r"""
    Cumulative distribution function of the flat-topped von Mises distribution.

    Let $\phi = (\theta - \mu) \bmod 2\pi$ re-centred onto $[-\pi, \pi]$ and
    $g_{\kappa,\nu}(\phi) = \exp\!\bigl[\kappa \cos(\phi + \nu \sin \phi)\bigr]$.
    The normalised primitive
    $$
    H_{\kappa,\nu}(\phi) = \frac{1}{Z} \int_{-\pi}^{\phi} g_{\kappa,\nu}(t)\,dt,
    \qquad Z = \int_{-\pi}^{\pi} g_{\kappa,\nu}(t)\,dt,
    $$
    is approximated with spectral accuracy by a trapezoidal rule on an
    equispaced grid (size selected from $O(\sqrt{\kappa})$). The CDF on
    $[0, 2\pi)$ then follows from $F(\theta) = H_{\kappa,\nu}(\phi) -
    H_{\kappa,\nu}(\phi_0)$ with $\phi_0 = ((-\mu) \bmod 2\pi) - \pi$. The
    precomputed cumulative grid is cached per $(\kappa, \nu)$, so repeated
    evaluations are $O(1)$ once the table is built.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        Location parameter, $0 \le \mu \le 2\pi$.
    kappa : float
        Concentration parameter, $\kappa \ge 0$ (capped internally at
        :data:`_VMFT_KAPPA_UPPER` for numerical stability).
    nu : float
        Shape parameter, $-1 \le \nu \le 1$.

    Returns
    -------
    cdf_values : array_like
        Cumulative probabilities corresponding to `x`.
    """
    mu_val = _vmft_ensure_scalar(mu, "mu")
    kappa_val = _vmft_ensure_scalar(kappa, "kappa")
    nu_val = _vmft_ensure_scalar(nu, "nu")
    return super().cdf(x, mu_val, kappa_val, nu_val, *args, **kwargs)

jonespewsey_gen

Bases: CircularContinuous

Jones-Pewsey Distribution

jonespewsey

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Parameters must be scalar; cached normalisation tables are built per parameter set. Implementation based on Section 4.3.9 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
class jonespewsey_gen(CircularContinuous):
    """Jones-Pewsey Distribution

    ![jonespewsey](../images/circ-mod-jonespewsey.png)

    Methods
    -------
    pdf(x, mu, kappa, psi)
        Probability density function.

    cdf(x, mu, kappa, psi)
        Cumulative distribution function.


    Note
    ----
    Parameters must be scalar; cached normalisation tables are built per parameter set.
    Implementation based on Section 4.3.9 of Pewsey et al. (2014)
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._sampler_cache = {}
        self._series_cache = {}

    def _validate_params(self, mu, kappa, psi):
        mu_arr, kappa_arr, psi_arr = np.broadcast_arrays(mu, kappa, psi)
        return (
            (mu_arr >= 0.0)
            & (mu_arr <= 2.0 * np.pi)
            & (kappa_arr >= 0.0)
            & np.isfinite(kappa_arr)
            & np.isfinite(psi_arr)
        )

    def _argcheck(self, mu, kappa, psi):
        try:
            return self._validate_params(mu, kappa, psi)
        except ValueError:
            return False

    def _pdf(self, x, mu, kappa, psi):
        x = np.asarray(x, dtype=float)
        kappa_scalar = _jp_ensure_scalar(kappa, "kappa")
        psi_scalar = _jp_ensure_scalar(psi, "psi")

        if not np.isfinite(kappa_scalar) or not np.isfinite(psi_scalar):
            return np.full_like(x, np.nan, dtype=float)

        if abs(kappa_scalar) < _JP_KAPPA_TOL:
            return np.full_like(x, 1.0 / (2.0 * np.pi), dtype=float)

        normalizer = self._get_cached_normalizer(
            lambda: _c_jonespewsey(mu, kappa_scalar, psi_scalar),
            mu,
            kappa_scalar,
            psi_scalar,
        )
        self._c = normalizer

        if abs(psi_scalar) < _JP_PSI_TOL:
            return normalizer * np.exp(kappa_scalar * np.cos(x - mu))

        return normalizer * _kernel_jonespewsey(x, mu, kappa_scalar, psi_scalar)

    def pdf(self, x, mu, kappa, psi, *args, **kwargs):
        r"""
        Probability density function of the Jones-Pewsey distribution.

        $$
        f(\theta) = c(\kappa, \psi)
        \Big(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \mu)\Big)^{1/\psi},
        $$

        where ``c(\kappa, \psi)`` is the normalizing constant, evaluated numerically with
        stable special-case reductions:

            - ``c = 1 / (2\pi)`` when ``\kappa`` is effectively zero (uniform limit).
            - ``c = 1 / (2\pi I_0(\kappa))`` as ``\psi \to 0`` (von Mises limit).

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        kappa : float
            Concentration parameter, kappa >= 0.
        psi : float
            Shape parameter, -∞ <= psi <= ∞.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, kappa, psi, *args, **kwargs)

    def _cdf(self, x, mu, kappa, psi):
        wrapped = self._wrap_angles(x)
        arr = np.asarray(wrapped, dtype=float)
        flat = arr.reshape(-1)
        if flat.size == 0:
            return arr.astype(float)

        mu_val = _jp_ensure_scalar(mu, "mu")
        kappa_val = _jp_ensure_scalar(kappa, "kappa")
        psi_val = _jp_ensure_scalar(psi, "psi")

        two_pi = 2.0 * np.pi

        if kappa_val < _JP_KAPPA_TOL:
            result = np.mod(flat, two_pi) / two_pi
            return result.reshape(arr.shape)

        if abs(psi_val) < _JP_PSI_TOL:
            return vonmises.cdf(arr, mu=mu_val, kappa=kappa_val)

        try:
            n_idx, coeffs = self._jp_get_series(kappa_val, psi_val)
        except Exception:  # pragma: no cover - defensive fallback
            cdf_vals = self._cdf_from_pdf(arr, mu_val, kappa_val, psi_val)
            return np.asarray(cdf_vals, dtype=float).reshape(arr.shape)

        phi_start = (-mu_val) % two_pi
        phi_end = (flat - mu_val) % two_pi

        H_start = float(self._jp_series_cumulative(np.array([phi_start]), n_idx, coeffs)[0])
        H_end = self._jp_series_cumulative(phi_end, n_idx, coeffs)

        cdf = np.where(
            phi_end >= phi_start,
            np.clip(H_end - H_start, 0.0, 1.0),
            np.clip(1.0 - (H_start - H_end), 0.0, 1.0),
        )

        return cdf.reshape(arr.shape)

    def cdf(self, x, mu, kappa, psi, *args, **kwargs):
        r"""
        Cumulative distribution function of the Jones--Pewsey distribution.

        $$
        F(\theta)=\frac{\theta-\mu}{2\pi}+\frac{1}{\pi}
        \sum_{n\ge 1}\frac{\alpha_n(\kappa,\psi)}{n}
        \sin\bigl(n(\theta-\mu)\bigr),
        $$
        where the cosine moments $\alpha_n$ are evaluated through the
        associated Legendre expression reported by Jones & Pewsey (2005).
        Coefficients are cached per parameter set and the routine falls back to
        numerical quadrature only when the series becomes unstable,
        reproducing the von Mises limit as $\psi \to 0$ and the uniform limit
        as $\kappa \to 0$.

        Parameters
        ----------
        x : array_like
            Evaluation points (radians), automatically wrapped onto [0, 2π).
        mu, kappa, psi : float
            Jones--Pewsey location, concentration, and shape parameters.

        Returns
        -------
        ndarray
            CDF values matching the shape of x.
        """
        return super().cdf(x, mu, kappa, psi, *args, **kwargs)

    def _ppf(self, q, mu, kappa, psi):
        mu_val = _jp_ensure_scalar(mu, "mu")
        kappa_val = _jp_ensure_scalar(kappa, "kappa")
        psi_val = _jp_ensure_scalar(psi, "psi")
        two_pi = 2.0 * np.pi

        q_arr = np.asarray(q, dtype=float)
        if q_arr.size == 0:
            return q_arr.astype(float)

        flat = q_arr.reshape(-1)
        result = np.full_like(flat, np.nan, dtype=float)

        valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0)
        if np.any(valid):
            q_valid = flat[valid]

            boundary_lo = q_valid <= 0.0
            boundary_hi = q_valid >= 1.0
            interior = (~boundary_lo) & (~boundary_hi)
            theta_vals = np.zeros_like(q_valid)

            theta_vals[boundary_lo] = 0.0
            theta_vals[boundary_hi] = two_pi

            if np.any(interior):
                q_int = q_valid[interior]
                eps = 1e-15
                q_clipped = np.clip(q_int, eps, 1.0 - eps)
                if kappa_val < _JP_KAPPA_TOL:
                    theta_vals[interior] = two_pi * q_clipped
                elif abs(psi_val) < _JP_PSI_TOL:
                    vm = vonmises(kappa=kappa_val, mu=mu_val)
                    theta_vals[interior] = vm.ppf(q_clipped)
                else:
                    theta_curr = two_pi * q_clipped
                    L = np.zeros_like(theta_curr)
                    H = np.full_like(theta_curr, two_pi)
                    tol_cdf = 1e-12
                    tol_theta = 1e-10
                    max_iter = 8

                    for _ in range(max_iter):
                        cdf_vals = np.asarray(
                            self.cdf(theta_curr, mu_val, kappa_val, psi_val), dtype=float
                        )
                        pdf_vals = np.asarray(
                            self.pdf(theta_curr, mu_val, kappa_val, psi_val), dtype=float
                        )
                        delta = cdf_vals - q_clipped

                        L = np.where(delta <= 0.0, theta_curr, L)
                        H = np.where(delta > 0.0, theta_curr, H)

                        converged = (np.abs(delta) <= tol_cdf) & ((H - L) <= tol_theta)
                        if np.all(converged):
                            break

                        denom = np.clip(pdf_vals, 1e-15, None)
                        step = np.clip(delta / denom, -np.pi, np.pi)
                        theta_next = theta_curr - step
                        midpoint = 0.5 * (L + H)
                        theta_next = np.where(
                            (theta_next <= L) | (theta_next >= H),
                            midpoint,
                            theta_next,
                        )
                        theta_curr = np.clip(theta_next, 0.0, two_pi)

                    residual = np.asarray(
                        self.cdf(theta_curr, mu_val, kappa_val, psi_val),
                        dtype=float,
                    ) - q_clipped
                    mask = (np.abs(residual) > tol_cdf) | ((H - L) > tol_theta)
                    if np.any(mask):
                        theta_b = theta_curr.copy()
                        L_b = L.copy()
                        H_b = H.copy()
                        for _ in range(30):
                            if not np.any(mask):
                                break
                            mid = 0.5 * (L_b + H_b)
                            cdf_mid = np.asarray(
                                self.cdf(mid, mu_val, kappa_val, psi_val),
                                dtype=float,
                            )
                            delta_mid = cdf_mid - q_clipped
                            take_upper = (delta_mid > 0.0) & mask
                            take_lower = (~take_upper) & mask
                            H_b = np.where(take_upper, mid, H_b)
                            L_b = np.where(take_lower, mid, L_b)
                            theta_b = np.where(mask, mid, theta_b)
                            mask = mask & (np.abs(delta_mid) > tol_cdf)
                        theta_curr = np.where(mask, 0.5 * (L_b + H_b), theta_b)

                    theta_vals[interior] = theta_curr

            result_vals = theta_vals
            result_vals[boundary_lo] = 0.0
            result_vals[boundary_hi] = two_pi
            result[valid] = result_vals

        result = result.reshape(q_arr.shape)
        return result

    def ppf(self, q, mu, kappa, psi, *args, **kwargs):
        r"""
        Quantile function of the Jones--Pewsey law.

        The inverse CDF is obtained by a safeguarded Newton iteration that uses
        the series-based CDF as the residual and the fully normalised PDF as the
        slope.  Bracketing and bisection polishing guarantee convergence on the
        circular interval [0, 2π] while the implementation switches to the
        closed-form von Mises or uniform solutions in their respective limits.

        Parameters
        ----------
        q : array_like
            Probabilities in [0, 1].
        mu, kappa, psi : float
            Jones--Pewsey parameters.

        Returns
        -------
        ndarray
            Quantiles with the same shape as q.
        """
        return super().ppf(q, mu, kappa, psi, *args, **kwargs)

    def _rvs(self, mu, kappa, psi, size=None, random_state=None):
        rng = self._init_rng(random_state)

        mu_val = _jp_ensure_scalar(mu, "mu")
        mu_val = float(np.mod(mu_val, 2.0 * np.pi))
        kappa_val = _jp_ensure_scalar(kappa, "kappa")
        psi_val = _jp_ensure_scalar(psi, "psi")

        if size is None:
            size_tuple = ()
            total = 1
        elif np.isscalar(size):
            size_tuple = (int(size),)
            total = int(size_tuple[0])
        else:
            size_tuple = tuple(int(s) for s in np.atleast_1d(size))
            total = int(np.prod(size_tuple))

        two_pi = 2.0 * np.pi
        if kappa_val < _JP_KAPPA_TOL:
            samples = rng.uniform(0.0, two_pi, size=total)
            return samples.reshape(size_tuple)

        if abs(psi_val) < _JP_PSI_TOL:
            return vonmises.rvs(mu=mu_val, kappa=kappa_val, size=size_tuple or None, random_state=rng)

        kappa_env, envelope_const = self._jp_sampler_envelope(mu_val, kappa_val, psi_val)
        samples = np.empty(total, dtype=float)
        filled = 0

        while filled < total:
            remaining = total - filled
            proposals = vonmises.rvs(
                mu=mu_val,
                kappa=kappa_env,
                size=remaining,
                random_state=rng,
            )
            target_vals = self.pdf(proposals, mu_val, kappa_val, psi_val)
            proposal_vals = vonmises.pdf(proposals, mu=mu_val, kappa=kappa_env)
            ratio = np.where(proposal_vals > 0.0, target_vals / (envelope_const * proposal_vals), 0.0)
            u = rng.uniform(0.0, 1.0, size=remaining)
            accept = ratio >= u
            n_accept = int(np.sum(accept))
            if n_accept > 0:
                samples[filled:filled + n_accept] = proposals[accept][:n_accept]
                filled += n_accept

        return samples.reshape(size_tuple)

    def rvs(self, mu, kappa, psi, size=None, random_state=None):
        r"""
        Draw random variates from the Jones-Pewsey distribution.

        A von Mises envelope is tuned to the target density via local curvature
        matching and a grid-based optimisation, yielding an acceptance-rejection
        sampler that is both exact and efficient across the parameter space.

        Parameters
        ----------
        mu, kappa, psi : float
            Jones-Pewsey parameters.
        size : int or tuple of ints, optional
            Output shape.  When omitted a single draw is returned.
        random_state : numpy.random.Generator or compatible seed, optional
            Source of randomness.

        Returns
        -------
        ndarray
            Sample(s) wrapped to [0, 2π).
        """
        return super().rvs(mu, kappa, psi, size=size, random_state=random_state)

    def _jp_sampler_envelope(self, mu, kappa, psi):
        key = (float(np.mod(mu, 2.0 * np.pi)), float(kappa), float(psi))
        cached = self._sampler_cache.get(key)
        if cached is not None:
            return cached

        kappa_env = _jp_effective_kappa(kappa, psi)
        phi_grid = np.linspace(0.0, 2.0 * np.pi, 2048, endpoint=False)
        theta_grid = np.mod(mu + phi_grid, 2.0 * np.pi)

        target_vals = self.pdf(theta_grid, mu, kappa, psi)
        log_target = np.log(np.clip(target_vals, np.finfo(float).tiny, None))

        kappa_env, envelope_const = _optimize_vonmises_envelope(
            theta_grid,
            log_target,
            mu,
            max(kappa_env, 1e-6),
        )

        self._sampler_cache[key] = (kappa_env, envelope_const)
        return kappa_env, envelope_const

    def _jp_get_series(self, kappa, psi, max_harmonics=256, grid_size=4096):
        key = (float(kappa), float(psi))
        cached = self._series_cache.get(key)
        if cached is not None:
            return cached

        phi = np.linspace(-np.pi, np.pi, int(grid_size), endpoint=False)
        theta = np.mod(phi, 2.0 * np.pi)
        pdf_vals = self.pdf(theta, 0.0, kappa, psi)
        pdf_vals = np.asarray(pdf_vals, dtype=float)

        delta = (2.0 * np.pi) / float(grid_size)
        harmonics = np.arange(0, max_harmonics + 1, dtype=float)
        cos_matrix = np.cos(np.outer(harmonics, phi))
        cos_coeffs = delta * cos_matrix @ pdf_vals
        cos_coeffs[0] = 1.0
        cos_coeffs = np.clip(cos_coeffs, -1.0, 1.0)

        n_idx = harmonics[1:]
        coeffs = cos_coeffs[1:]
        if n_idx.size == 0:
            result = (n_idx, coeffs)
            self._series_cache[key] = result
            return result

        contributions = np.abs(coeffs / n_idx)
        tol = 5e-12
        mask = contributions > tol
        if not np.any(mask):
            n_used = n_idx[:1]
            coeffs_used = coeffs[:1]
        else:
            last = int(np.nonzero(mask)[0][-1]) + 1
            n_used = n_idx[:last]
            coeffs_used = coeffs[:last]
        result = (n_used, coeffs_used)
        self._series_cache[key] = result
        return result

    @staticmethod
    def _jp_series_cumulative(phi_values, n_idx, coeffs):
        phi_values = np.asarray(phi_values, dtype=float)
        phi_flat = phi_values.reshape(-1)
        result = phi_flat / (2.0 * np.pi)
        if n_idx.size:
            sin_terms = np.sin(np.outer(phi_flat, n_idx))
            result += (sin_terms @ (coeffs / n_idx)) / np.pi
        return result.reshape(phi_values.shape)

    @staticmethod
    def _jp_series_skew_integral(phi_values, n_idx, coeffs):
        phi_values = np.asarray(phi_values, dtype=float)
        phi_flat = phi_values.reshape(-1)
        base = (1.0 - np.cos(phi_flat)) / (2.0 * np.pi)
        if n_idx.size:
            n_arr = n_idx
            coeff_arr = coeffs
            contributions = np.zeros_like(phi_flat)

            mask_one = np.isclose(n_arr, 1.0)
            if np.any(mask_one):
                coeff_one = float(np.sum(coeff_arr[mask_one]))
                contributions += coeff_one * ((1.0 - np.cos(2.0 * phi_flat)) / 4.0)

            mask_other = ~mask_one
            if np.any(mask_other):
                n_other = n_arr[mask_other]
                coeff_other = coeff_arr[mask_other]
                phi_matrix = np.outer(phi_flat, n_other)
                term_plus = (1.0 - np.cos(phi_matrix + phi_flat[:, None])) / (n_other + 1.0)
                term_minus = (1.0 - np.cos(phi_matrix - phi_flat[:, None])) / (n_other - 1.0)
                contributions += 0.5 * (term_plus - term_minus) @ coeff_other

            base += contributions / np.pi
        return base.reshape(phi_values.shape)

    def fit(
        self,
        data,
        *,
        weights=None,
        method="mle",
        return_info=False,
        psi_bounds=(-4.0, 4.0),
        kappa_bounds=(1e-6, 1e3),
        optimizer="L-BFGS-B",
        **kwargs,
    ):
        r"""
        Estimate Jones--Pewsey parameters from data.

        A moment-based start is built from the sample circular mean
        μ̂ and resultant length r₁ with the usual von Mises
        approximation for κ.  The shape parameter ψ is seeded
        by scanning a coarse grid and the three parameters are then refined via
        constrained maximum likelihood:

        ```
        ℓ(μ, κ, ψ) = Σᵢ wᵢ log( c(κ, ψ) K_JP(θᵢ − μ; κ, ψ) ).
        ```

        The normalising constant c is evaluated using the associated
        Legendre function whenever stable, with numerical quadrature as a
        fallback.  Set method="moments" to skip the optimisation and
        return the analytic seed.

        Parameters
        ----------
        data : array_like
            Sample angles (radians), wrapped internally.
        weights : array_like, optional
            Non-negative weights broadcastable to data.
        method : {"moments", "mle"}, optional
            Whether to return the analytic seed or run the numerical MLE.
        return_info : bool, optional
            If True return a diagnostics dictionary alongside the estimates.
        psi_bounds, kappa_bounds : tuple, optional
            Parameter bounds used by the optimiser.
        optimizer : str, optional
            Name of the ``scipy.optimize.minimize`` method.

        Returns
        -------
        tuple or (tuple, dict)
            Estimated parameters (mu, kappa, psi) and, optionally,
            optimisation diagnostics when return_info is True.
        """
        kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
        x = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
        if x.size == 0:
            raise ValueError("`data` must contain at least one observation.")

        if weights is None:
            w = np.ones_like(x, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            if np.any(w < 0):
                raise ValueError("`weights` must be non-negative.")
            w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel()

        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0:
            raise ValueError("Sum of weights must be positive.")
        n_eff = w_sum**2 / np.sum(w**2)

        mu_mom, r1 = circ_mean_and_r(alpha=x, w=w)
        if not np.isfinite(mu_mom):
            mu_mom = 0.0
        mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
        r1 = float(np.clip(r1, 1e-12, 1.0 - 1e-12))
        n_adjust = int(max(1, round(w_sum)))
        kappa_mom = float(np.clip(circ_kappa(r=r1, n=n_adjust), kappa_bounds[0], kappa_bounds[1]))

        psi_low, psi_high = psi_bounds
        psi_grid = np.linspace(psi_low, psi_high, 9)

        def nll(params):
            mu_param, kappa_param, psi_param = params
            if not (kappa_bounds[0] <= kappa_param <= kappa_bounds[1]):
                return np.inf
            if not (psi_low <= psi_param <= psi_high):
                return np.inf
            mu_wrapped = float(np.mod(mu_param, 2.0 * np.pi))
            pdf_vals = self.pdf(x, mu_wrapped, kappa_param, psi_param)
            if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)):
                return np.inf
            return float(-np.sum(w * np.log(pdf_vals)))

        psi_init = 0.0
        best_score = nll((mu_mom, kappa_mom, psi_init))
        for candidate in psi_grid:
            score = nll((mu_mom, kappa_mom, candidate))
            if score < best_score:
                best_score = score
                psi_init = float(candidate)

        method_key = method.lower()
        alias = {"analytical": "moments", "numerical": "mle"}
        method_key = alias.get(method_key, method_key)
        if method_key not in {"moments", "mle"}:
            raise ValueError("`method` must be either 'moments' or 'mle'.")

        if method_key == "moments":
            estimates = (self._wrap_direction(mu_mom), kappa_mom, 0.0)
            info = {
                "method": "moments",
                "loglik": float(-best_score),
                "n_effective": float(n_eff),
                "converged": True,
            }
        else:
            bounds = [(0.0, 2.0 * np.pi), kappa_bounds, psi_bounds]
            init = np.array([mu_mom, kappa_mom, psi_init], dtype=float)
            result = minimize(
                nll,
                init,
                method=optimizer,
                bounds=bounds,
                **kwargs,
            )
            if not result.success:
                raise RuntimeError(f"jonespewsey.fit(method='mle') failed: {result.message}")
            mu_hat = self._wrap_direction(float(result.x[0]))
            kappa_hat = float(np.clip(result.x[1], kappa_bounds[0], kappa_bounds[1]))
            psi_hat = float(np.clip(result.x[2], psi_bounds[0], psi_bounds[1]))
            final_nll = float(result.fun)
            estimates = (mu_hat, kappa_hat, psi_hat)
            info = {
                "method": "mle",
                "loglik": float(-final_nll),
                "n_effective": float(n_eff),
                "converged": bool(result.success),
                "nit": result.nit,
                "optimizer": optimizer,
                "initial": (mu_mom, kappa_mom, psi_init),
            }

        if return_info:
            return estimates, info
        return estimates

pdf(x, mu, kappa, psi, *args, **kwargs)

Probability density function of the Jones-Pewsey distribution.

\[ f(\theta) = c(\kappa, \psi) \Big(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \mu)\Big)^{1/\psi}, \]

where c(\kappa, \psi) is the normalizing constant, evaluated numerically with stable special-case reductions:

- ``c = 1 / (2\pi)`` when ``\kappa`` is effectively zero (uniform limit).
- ``c = 1 / (2\pi I_0(\kappa))`` as ``\psi \to 0`` (von Mises limit).

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
kappa float

Concentration parameter, kappa >= 0.

required
psi float

Shape parameter, -∞ <= psi <= ∞.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
def pdf(self, x, mu, kappa, psi, *args, **kwargs):
    r"""
    Probability density function of the Jones-Pewsey distribution.

    $$
    f(\theta) = c(\kappa, \psi)
    \Big(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \mu)\Big)^{1/\psi},
    $$

    where ``c(\kappa, \psi)`` is the normalizing constant, evaluated numerically with
    stable special-case reductions:

        - ``c = 1 / (2\pi)`` when ``\kappa`` is effectively zero (uniform limit).
        - ``c = 1 / (2\pi I_0(\kappa))`` as ``\psi \to 0`` (von Mises limit).

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    kappa : float
        Concentration parameter, kappa >= 0.
    psi : float
        Shape parameter, -∞ <= psi <= ∞.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, kappa, psi, *args, **kwargs)

cdf(x, mu, kappa, psi, *args, **kwargs)

Cumulative distribution function of the Jones--Pewsey distribution.

$$ F(\theta)=\frac{\theta-\mu}{2\pi}+\frac{1}{\pi} \sum_{n\ge 1}\frac{\alpha_n(\kappa,\psi)}{n} \sin\bigl(n(\theta-\mu)\bigr), $$ where the cosine moments \(\alpha_n\) are evaluated through the associated Legendre expression reported by Jones & Pewsey (2005). Coefficients are cached per parameter set and the routine falls back to numerical quadrature only when the series becomes unstable, reproducing the von Mises limit as \(\psi \to 0\) and the uniform limit as \(\kappa \to 0\).

Parameters:

Name Type Description Default
x array_like

Evaluation points (radians), automatically wrapped onto [0, 2π).

required
mu float

Jones--Pewsey location, concentration, and shape parameters.

required
kappa float

Jones--Pewsey location, concentration, and shape parameters.

required
psi float

Jones--Pewsey location, concentration, and shape parameters.

required

Returns:

Type Description
ndarray

CDF values matching the shape of x.

Source code in pycircstat2/distributions.py
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
def cdf(self, x, mu, kappa, psi, *args, **kwargs):
    r"""
    Cumulative distribution function of the Jones--Pewsey distribution.

    $$
    F(\theta)=\frac{\theta-\mu}{2\pi}+\frac{1}{\pi}
    \sum_{n\ge 1}\frac{\alpha_n(\kappa,\psi)}{n}
    \sin\bigl(n(\theta-\mu)\bigr),
    $$
    where the cosine moments $\alpha_n$ are evaluated through the
    associated Legendre expression reported by Jones & Pewsey (2005).
    Coefficients are cached per parameter set and the routine falls back to
    numerical quadrature only when the series becomes unstable,
    reproducing the von Mises limit as $\psi \to 0$ and the uniform limit
    as $\kappa \to 0$.

    Parameters
    ----------
    x : array_like
        Evaluation points (radians), automatically wrapped onto [0, 2π).
    mu, kappa, psi : float
        Jones--Pewsey location, concentration, and shape parameters.

    Returns
    -------
    ndarray
        CDF values matching the shape of x.
    """
    return super().cdf(x, mu, kappa, psi, *args, **kwargs)

ppf(q, mu, kappa, psi, *args, **kwargs)

Quantile function of the Jones--Pewsey law.

The inverse CDF is obtained by a safeguarded Newton iteration that uses the series-based CDF as the residual and the fully normalised PDF as the slope. Bracketing and bisection polishing guarantee convergence on the circular interval [0, 2π] while the implementation switches to the closed-form von Mises or uniform solutions in their respective limits.

Parameters:

Name Type Description Default
q array_like

Probabilities in [0, 1].

required
mu float

Jones--Pewsey parameters.

required
kappa float

Jones--Pewsey parameters.

required
psi float

Jones--Pewsey parameters.

required

Returns:

Type Description
ndarray

Quantiles with the same shape as q.

Source code in pycircstat2/distributions.py
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
def ppf(self, q, mu, kappa, psi, *args, **kwargs):
    r"""
    Quantile function of the Jones--Pewsey law.

    The inverse CDF is obtained by a safeguarded Newton iteration that uses
    the series-based CDF as the residual and the fully normalised PDF as the
    slope.  Bracketing and bisection polishing guarantee convergence on the
    circular interval [0, 2π] while the implementation switches to the
    closed-form von Mises or uniform solutions in their respective limits.

    Parameters
    ----------
    q : array_like
        Probabilities in [0, 1].
    mu, kappa, psi : float
        Jones--Pewsey parameters.

    Returns
    -------
    ndarray
        Quantiles with the same shape as q.
    """
    return super().ppf(q, mu, kappa, psi, *args, **kwargs)

rvs(mu, kappa, psi, size=None, random_state=None)

Draw random variates from the Jones-Pewsey distribution.

A von Mises envelope is tuned to the target density via local curvature matching and a grid-based optimisation, yielding an acceptance-rejection sampler that is both exact and efficient across the parameter space.

Parameters:

Name Type Description Default
mu float

Jones-Pewsey parameters.

required
kappa float

Jones-Pewsey parameters.

required
psi float

Jones-Pewsey parameters.

required
size int or tuple of ints

Output shape. When omitted a single draw is returned.

None
random_state numpy.random.Generator or compatible seed

Source of randomness.

None

Returns:

Type Description
ndarray

Sample(s) wrapped to [0, 2π).

Source code in pycircstat2/distributions.py
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
def rvs(self, mu, kappa, psi, size=None, random_state=None):
    r"""
    Draw random variates from the Jones-Pewsey distribution.

    A von Mises envelope is tuned to the target density via local curvature
    matching and a grid-based optimisation, yielding an acceptance-rejection
    sampler that is both exact and efficient across the parameter space.

    Parameters
    ----------
    mu, kappa, psi : float
        Jones-Pewsey parameters.
    size : int or tuple of ints, optional
        Output shape.  When omitted a single draw is returned.
    random_state : numpy.random.Generator or compatible seed, optional
        Source of randomness.

    Returns
    -------
    ndarray
        Sample(s) wrapped to [0, 2π).
    """
    return super().rvs(mu, kappa, psi, size=size, random_state=random_state)

fit(data, *, weights=None, method='mle', return_info=False, psi_bounds=(-4.0, 4.0), kappa_bounds=(1e-06, 1000.0), optimizer='L-BFGS-B', **kwargs)

Estimate Jones--Pewsey parameters from data.

A moment-based start is built from the sample circular mean μ̂ and resultant length r₁ with the usual von Mises approximation for κ. The shape parameter ψ is seeded by scanning a coarse grid and the three parameters are then refined via constrained maximum likelihood:

ℓ(μ, κ, ψ) = Σᵢ wᵢ log( c(κ, ψ) K_JP(θᵢ − μ; κ, ψ) ).

The normalising constant c is evaluated using the associated Legendre function whenever stable, with numerical quadrature as a fallback. Set method="moments" to skip the optimisation and return the analytic seed.

Parameters:

Name Type Description Default
data array_like

Sample angles (radians), wrapped internally.

required
weights array_like

Non-negative weights broadcastable to data.

None
method (moments, mle)

Whether to return the analytic seed or run the numerical MLE.

"moments"
return_info bool

If True return a diagnostics dictionary alongside the estimates.

False
psi_bounds tuple

Parameter bounds used by the optimiser.

(-4.0, 4.0)
kappa_bounds tuple

Parameter bounds used by the optimiser.

(-4.0, 4.0)
optimizer str

Name of the scipy.optimize.minimize method.

'L-BFGS-B'

Returns:

Type Description
tuple or (tuple, dict)

Estimated parameters (mu, kappa, psi) and, optionally, optimisation diagnostics when return_info is True.

Source code in pycircstat2/distributions.py
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
def fit(
    self,
    data,
    *,
    weights=None,
    method="mle",
    return_info=False,
    psi_bounds=(-4.0, 4.0),
    kappa_bounds=(1e-6, 1e3),
    optimizer="L-BFGS-B",
    **kwargs,
):
    r"""
    Estimate Jones--Pewsey parameters from data.

    A moment-based start is built from the sample circular mean
    μ̂ and resultant length r₁ with the usual von Mises
    approximation for κ.  The shape parameter ψ is seeded
    by scanning a coarse grid and the three parameters are then refined via
    constrained maximum likelihood:

    ```
    ℓ(μ, κ, ψ) = Σᵢ wᵢ log( c(κ, ψ) K_JP(θᵢ − μ; κ, ψ) ).
    ```

    The normalising constant c is evaluated using the associated
    Legendre function whenever stable, with numerical quadrature as a
    fallback.  Set method="moments" to skip the optimisation and
    return the analytic seed.

    Parameters
    ----------
    data : array_like
        Sample angles (radians), wrapped internally.
    weights : array_like, optional
        Non-negative weights broadcastable to data.
    method : {"moments", "mle"}, optional
        Whether to return the analytic seed or run the numerical MLE.
    return_info : bool, optional
        If True return a diagnostics dictionary alongside the estimates.
    psi_bounds, kappa_bounds : tuple, optional
        Parameter bounds used by the optimiser.
    optimizer : str, optional
        Name of the ``scipy.optimize.minimize`` method.

    Returns
    -------
    tuple or (tuple, dict)
        Estimated parameters (mu, kappa, psi) and, optionally,
        optimisation diagnostics when return_info is True.
    """
    kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
    x = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
    if x.size == 0:
        raise ValueError("`data` must contain at least one observation.")

    if weights is None:
        w = np.ones_like(x, dtype=float)
    else:
        w = np.asarray(weights, dtype=float)
        if np.any(w < 0):
            raise ValueError("`weights` must be non-negative.")
        w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel()

    w_sum = float(np.sum(w))
    if not np.isfinite(w_sum) or w_sum <= 0:
        raise ValueError("Sum of weights must be positive.")
    n_eff = w_sum**2 / np.sum(w**2)

    mu_mom, r1 = circ_mean_and_r(alpha=x, w=w)
    if not np.isfinite(mu_mom):
        mu_mom = 0.0
    mu_mom = float(np.mod(mu_mom, 2.0 * np.pi))
    r1 = float(np.clip(r1, 1e-12, 1.0 - 1e-12))
    n_adjust = int(max(1, round(w_sum)))
    kappa_mom = float(np.clip(circ_kappa(r=r1, n=n_adjust), kappa_bounds[0], kappa_bounds[1]))

    psi_low, psi_high = psi_bounds
    psi_grid = np.linspace(psi_low, psi_high, 9)

    def nll(params):
        mu_param, kappa_param, psi_param = params
        if not (kappa_bounds[0] <= kappa_param <= kappa_bounds[1]):
            return np.inf
        if not (psi_low <= psi_param <= psi_high):
            return np.inf
        mu_wrapped = float(np.mod(mu_param, 2.0 * np.pi))
        pdf_vals = self.pdf(x, mu_wrapped, kappa_param, psi_param)
        if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)):
            return np.inf
        return float(-np.sum(w * np.log(pdf_vals)))

    psi_init = 0.0
    best_score = nll((mu_mom, kappa_mom, psi_init))
    for candidate in psi_grid:
        score = nll((mu_mom, kappa_mom, candidate))
        if score < best_score:
            best_score = score
            psi_init = float(candidate)

    method_key = method.lower()
    alias = {"analytical": "moments", "numerical": "mle"}
    method_key = alias.get(method_key, method_key)
    if method_key not in {"moments", "mle"}:
        raise ValueError("`method` must be either 'moments' or 'mle'.")

    if method_key == "moments":
        estimates = (self._wrap_direction(mu_mom), kappa_mom, 0.0)
        info = {
            "method": "moments",
            "loglik": float(-best_score),
            "n_effective": float(n_eff),
            "converged": True,
        }
    else:
        bounds = [(0.0, 2.0 * np.pi), kappa_bounds, psi_bounds]
        init = np.array([mu_mom, kappa_mom, psi_init], dtype=float)
        result = minimize(
            nll,
            init,
            method=optimizer,
            bounds=bounds,
            **kwargs,
        )
        if not result.success:
            raise RuntimeError(f"jonespewsey.fit(method='mle') failed: {result.message}")
        mu_hat = self._wrap_direction(float(result.x[0]))
        kappa_hat = float(np.clip(result.x[1], kappa_bounds[0], kappa_bounds[1]))
        psi_hat = float(np.clip(result.x[2], psi_bounds[0], psi_bounds[1]))
        final_nll = float(result.fun)
        estimates = (mu_hat, kappa_hat, psi_hat)
        info = {
            "method": "mle",
            "loglik": float(-final_nll),
            "n_effective": float(n_eff),
            "converged": bool(result.success),
            "nit": result.nit,
            "optimizer": optimizer,
            "initial": (mu_mom, kappa_mom, psi_init),
        }

    if return_info:
        return estimates, info
    return estimates

jonespewsey_sineskewed_gen

Bases: CircularContinuous

Sine-Skewed Jones-Pewsey Distribution

The Sine-Skewed Jones-Pewsey distribution is a circular distribution defined on \([0, 2\pi)\) that extends the Jones-Pewsey family by incorporating a sine-based skewness adjustment.

jonespewsey-sineskewed

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Parameters must be scalar; cached normalisation tables are built per parameter set. Implementation based on Section 4.3.11 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
class jonespewsey_sineskewed_gen(CircularContinuous):
    r"""Sine-Skewed Jones-Pewsey Distribution

    The Sine-Skewed Jones-Pewsey distribution is a circular distribution defined on $[0, 2\pi)$
    that extends the Jones-Pewsey family by incorporating a sine-based skewness adjustment.

    ![jonespewsey-sineskewed](../images/circ-mod-jonespewsey-sineskewed.png)

    Methods
    -------
    pdf(x, xi, kappa, psi, lmbd)
        Probability density function.

    cdf(x, xi, kappa, psi, lmbd)
        Cumulative distribution function.


    Note
    ----
    Parameters must be scalar; cached normalisation tables are built per parameter set.
    Implementation based on Section 4.3.11 of Pewsey et al. (2014)
    """

    def _validate_params(self, xi, kappa, psi, lmbd):
        xi_arr, kappa_arr, psi_arr, lmbd_arr = np.broadcast_arrays(xi, kappa, psi, lmbd)
        return (
            (xi_arr >= 0.0)
            & (xi_arr <= 2.0 * np.pi)
            & (kappa_arr >= 0.0)
            & np.isfinite(kappa_arr)
            & np.isfinite(psi_arr)
            & (lmbd_arr >= -1.0)
            & (lmbd_arr <= 1.0)
        )

    def _argcheck(self, xi, kappa, psi, lmbd):
        try:
            return self._validate_params(xi, kappa, psi, lmbd)
        except ValueError:
            return False

    def _pdf(self, x, xi, kappa, psi, lmbd):
        x = np.asarray(x, dtype=float)
        xi_scalar = _jp_ensure_scalar(xi, "xi")
        kappa_scalar = _jp_ensure_scalar(kappa, "kappa")
        psi_scalar = _jp_ensure_scalar(psi, "psi")
        lmbd_scalar = _jp_ensure_scalar(lmbd, "lmbd")

        if abs(kappa_scalar) < _JP_KAPPA_TOL:
            return (1.0 / (2.0 * np.pi)) * (1.0 + lmbd_scalar * np.sin(x - xi_scalar))

        normalizer = self._get_cached_normalizer(
            lambda: _c_jonespewsey(xi_scalar, kappa_scalar, psi_scalar),
            xi_scalar,
            kappa_scalar,
            psi_scalar,
        )
        self._c = normalizer

        base = _kernel_jonespewsey(x, xi_scalar, kappa_scalar, psi_scalar)
        return normalizer * base * (1.0 + lmbd_scalar * np.sin(x - xi_scalar))

    def pdf(self, x, xi, kappa, psi, lmbd, *args, **kwargs):
        r"""
        Probability density function of the Sine-Skewed Jones-Pewsey distribution.

        $$
        f(\theta) = c(\kappa,\psi)\Bigl(\cosh(\kappa\psi)+
        \sinh(\kappa\psi)\cos(\theta-\xi)\Bigr)^{1/\psi}
        \bigl(1+\lambda \sin(\theta-\xi)\bigr).
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        xi : float
            Direction parameter (generally not the mean), 0 <= ξ <= 2*pi.
        kappa : float
            Concentration parameter, κ >= 0. Higher values indicate a sharper peak.
        psi : float
            Shape parameter, -∞ <= ψ <= ∞. When ψ=-1, the distribution reduces to the wrapped Cauchy,
            when ψ=0, von Mises, and when ψ=1, cardioid.
        lmbd : float
            Skewness parameter, -1 < λ < 1. Controls the asymmetry introduced by the sine-skewing.

        Returns
        -------
        pdf_values: float
            Values of the probability density function at the specified points.
        """

        return super().pdf(x, xi, kappa, psi, lmbd, *args, **kwargs)

    def _cdf(self, x, xi, kappa, psi, lmbd):
        wrapped = self._wrap_angles(x)
        arr = np.asarray(wrapped, dtype=float)
        flat = arr.reshape(-1)
        if flat.size == 0:
            return arr.astype(float)

        xi_val = _jp_ensure_scalar(xi, "xi")
        kappa_val = _jp_ensure_scalar(kappa, "kappa")
        psi_val = _jp_ensure_scalar(psi, "psi")
        lmbd_val = _jp_ensure_scalar(lmbd, "lmbd")

        two_pi = 2.0 * np.pi

        if kappa_val < _JP_KAPPA_TOL:
            phi = (flat - xi_val) % two_pi
            base = phi / two_pi
            skew = (1.0 - np.cos(phi)) / (2.0 * np.pi)
            cdf = base + lmbd_val * skew
            return np.clip(cdf, 0.0, 1.0).reshape(arr.shape)

        if abs(psi_val) < _JP_PSI_TOL and abs(lmbd_val) < 1e-12:
            return jonespewsey.cdf(arr, mu=xi_val, kappa=kappa_val, psi=psi_val)

        n_idx, coeffs = jonespewsey._jp_get_series(kappa_val, psi_val)

        phi_start = (-xi_val) % two_pi
        phi_end = (flat - xi_val) % two_pi

        H_start = float(jonespewsey._jp_series_cumulative(np.array([phi_start]), n_idx, coeffs)[0])
        H_end = jonespewsey._jp_series_cumulative(phi_end, n_idx, coeffs)

        if abs(lmbd_val) > 0:
            J_start = float(jonespewsey._jp_series_skew_integral(np.array([phi_start]), n_idx, coeffs)[0])
            J_end = jonespewsey._jp_series_skew_integral(phi_end, n_idx, coeffs)
        else:
            J_start = 0.0
            J_end = np.zeros_like(H_end)

        base_cdf = np.where(
            phi_end >= phi_start,
            H_end - H_start,
            1.0 - (H_start - H_end),
        )

        skew_cdf = np.where(
            phi_end >= phi_start,
            J_end - J_start,
            -(J_start - J_end),
        )

        cdf = base_cdf + lmbd_val * skew_cdf
        return np.clip(cdf, 0.0, 1.0).reshape(arr.shape)

    def cdf(self, x, xi, kappa, psi, lmbd, *args, **kwargs):
        r"""
        Cumulative distribution function of the sine-skewed Jones--Pewsey law.

        No closed form is available; the implementation integrates the PDF on
        [0, 2π) using adaptive quadrature, honouring the symmetric JP and
        uniform limits when ``lambda`` or ``kappa`` approach zero.
        """
        return super().cdf(x, xi, kappa, psi, lmbd, *args, **kwargs)

    def _ppf(self, q, xi, kappa, psi, lmbd):
        xi_val = _jp_ensure_scalar(xi, "xi")
        xi_val = float(np.mod(xi_val, 2.0 * np.pi))
        kappa_val = _jp_ensure_scalar(kappa, "kappa")
        psi_val = _jp_ensure_scalar(psi, "psi")
        lmbd_val = _jp_ensure_scalar(lmbd, "lmbd")

        two_pi = 2.0 * np.pi
        q_arr = np.asarray(q, dtype=float)
        if q_arr.size == 0:
            return q_arr.astype(float)

        flat = q_arr.reshape(-1)
        result = np.full_like(flat, np.nan, dtype=float)

        valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0)
        if np.any(valid):
            q_valid = flat[valid]
            boundary_lo = q_valid <= 0.0
            boundary_hi = q_valid >= 1.0
            interior = (~boundary_lo) & (~boundary_hi)
            theta_vals = np.zeros_like(q_valid)
            theta_vals[boundary_lo] = 0.0
            theta_vals[boundary_hi] = two_pi

            if np.any(interior):
                q_int = q_valid[interior]
                eps = 1e-15
                q_clipped = np.clip(q_int, eps, 1.0 - eps)
                if kappa_val < _JP_KAPPA_TOL:
                    theta_vals[interior] = two_pi * q_clipped
                elif abs(lmbd_val) < 1e-12:
                    theta_vals[interior] = jonespewsey.ppf(
                        q_clipped, mu=xi_val, kappa=kappa_val, psi=psi_val
                    )
                else:
                    theta_curr = two_pi * q_clipped
                    L = np.zeros_like(theta_curr)
                    H = np.full_like(theta_curr, two_pi)
                    tol_cdf = 1e-12
                    tol_theta = 1e-10
                    max_iter = 8

                    for _ in range(max_iter):
                        cdf_vals = np.asarray(
                            self.cdf(theta_curr, xi_val, kappa_val, psi_val, lmbd_val),
                            dtype=float,
                        )
                        pdf_vals = np.asarray(
                            self.pdf(theta_curr, xi_val, kappa_val, psi_val, lmbd_val),
                            dtype=float,
                        )
                        delta = cdf_vals - q_clipped
                        L = np.where(delta <= 0.0, theta_curr, L)
                        H = np.where(delta > 0.0, theta_curr, H)

                        converged = (np.abs(delta) <= tol_cdf) & ((H - L) <= tol_theta)
                        if np.all(converged):
                            break

                        denom = np.clip(pdf_vals, 1e-15, None)
                        step = np.clip(delta / denom, -np.pi, np.pi)
                        theta_next = theta_curr - step
                        midpoint = 0.5 * (L + H)
                        theta_next = np.where(
                            (theta_next <= L) | (theta_next >= H),
                            midpoint,
                            theta_next,
                        )
                        theta_curr = np.clip(theta_next, 0.0, two_pi)

                    residual = np.asarray(
                        self.cdf(theta_curr, xi_val, kappa_val, psi_val, lmbd_val),
                        dtype=float,
                    ) - q_clipped
                    mask = (np.abs(residual) > tol_cdf) | ((H - L) > tol_theta)
                    if np.any(mask):
                        theta_b = theta_curr.copy()
                        L_b = L.copy()
                        H_b = H.copy()
                        for _ in range(30):
                            if not np.any(mask):
                                break
                            mid = 0.5 * (L_b + H_b)
                            cdf_mid = np.asarray(
                                self.cdf(mid, xi_val, kappa_val, psi_val, lmbd_val),
                                dtype=float,
                            )
                            delta_mid = cdf_mid - q_clipped
                            take_upper = (delta_mid > 0.0) & mask
                            take_lower = (~take_upper) & mask
                            H_b = np.where(take_upper, mid, H_b)
                            L_b = np.where(take_lower, mid, L_b)
                            theta_b = np.where(mask, mid, theta_b)
                            mask = mask & (np.abs(delta_mid) > tol_cdf)
                        theta_curr = np.where(mask, 0.5 * (L_b + H_b), theta_b)

                    theta_vals[interior] = theta_curr

            result_vals = theta_vals
            result_vals[boundary_lo] = 0.0
            result_vals[boundary_hi] = two_pi
            result[valid] = result_vals

        return result.reshape(q_arr.shape)

    def ppf(self, q, xi, kappa, psi, lmbd, *args, **kwargs):
        r"""
        Quantile function of the sine-skewed Jones--Pewsey distribution.

        The solver mirrors the symmetric JP inverse CDF while reusing the
        skew-aware CDF so that round-trip accuracy is preserved even for large
        skewness.  Uniform and purely symmetric edge cases are delegated to the
        corresponding closed forms.
        """
        return super().ppf(q, xi, kappa, psi, lmbd, *args, **kwargs)

    def _rvs(self, xi, kappa, psi, lmbd, size=None, random_state=None):
        rng = self._init_rng(random_state)

        xi_val = _jp_ensure_scalar(xi, "xi")
        xi_val = float(np.mod(xi_val, 2.0 * np.pi))
        kappa_val = _jp_ensure_scalar(kappa, "kappa")
        psi_val = _jp_ensure_scalar(psi, "psi")
        lmbd_val = _jp_ensure_scalar(lmbd, "lmbd")
        if abs(lmbd_val) >= 1.0:
            raise ValueError("|lmbd| must be < 1 for sine-skewed Jones-Pewsey.")

        if size is None:
            size_tuple = ()
            total = 1
        elif np.isscalar(size):
            size_tuple = (int(size),)
            total = int(size_tuple[0])
        else:
            size_tuple = tuple(int(s) for s in np.atleast_1d(size))
            total = int(np.prod(size_tuple))

        base_dist = jonespewsey(kappa=kappa_val, psi=psi_val, mu=xi_val)
        weights_max = 1.0 + abs(lmbd_val)

        samples = np.empty(total, dtype=float)
        filled = 0
        while filled < total:
            remaining = total - filled
            proposals = base_dist.rvs(size=remaining, random_state=rng)
            accept_prob = (1.0 + lmbd_val * np.sin(proposals - xi_val)) / weights_max
            u = rng.uniform(0.0, 1.0, size=remaining)
            accept = u <= accept_prob
            n_accept = int(np.sum(accept))
            if n_accept > 0:
                samples[filled:filled + n_accept] = proposals[accept][:n_accept]
                filled += n_accept

        return samples.reshape(size_tuple)

    def rvs(self, xi, kappa, psi, lmbd, size=None, random_state=None):
        r"""
        Draw random variates from the sine-skewed Jones--Pewsey distribution.

        Sampling follows the acceptance-rejection construction of Abe & Pewsey
        (2011): draw from the symmetric JP base and accept with probability
        $$\frac{1 + \lambda \sin\phi}{1 + |\lambda|}.$$  This scheme is exact,
        automatically respects the skew symmetry, and retains the base
        sampler's efficiency.
        """
        return super().rvs(xi, kappa, psi, lmbd, size=size, random_state=random_state)

    def fit(
        self,
        data,
        *,
        weights=None,
        method="two-step",
        return_info=False,
        optimizer="L-BFGS-B",
        refine=False,
        psi_bounds=(-4.0, 4.0),
        kappa_bounds=(1e-6, 1e3),
        lmbd_bounds=(-0.99, 0.99),
        base_kwargs=None,
        **kwargs,
    ):
        r"""
        Estimate sine-skewed JP parameters via a two-step maximum likelihood fit.

        1. Fit the symmetric JP base (xi, kappa, psi) using the MLE routine.
        2. Maximise the weighted log term sum log(1 + lambda sin(theta_i - xi)).
        3. Optionally refine all four parameters jointly (set refine=True).

        The acceptance-rejection sampler used for the skewed density makes the
        likelihood well behaved across |lambda| < 1, while moment starts ensure
        stability near the uniform limit.
        """
        kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
        x = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
        if x.size == 0:
            raise ValueError("`data` must contain at least one observation.")

        if weights is None:
            w = np.ones_like(x, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            if np.any(w < 0):
                raise ValueError("`weights` must be non-negative.")
            w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel()

        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0:
            raise ValueError("Sum of weights must be positive.")
        n_eff = w_sum**2 / np.sum(w**2)

        base_kwargs = {} if base_kwargs is None else dict(base_kwargs)
        base_estimates, base_info = jonespewsey.fit(
            x,
            weights=w,
            method="mle",
            psi_bounds=psi_bounds,
            kappa_bounds=kappa_bounds,
            optimizer=optimizer,
            return_info=True,
            **base_kwargs,
        )
        xi_hat, kappa_hat, psi_hat = base_estimates

        lam_low, lam_high = lmbd_bounds

        def lambda_nll(lmbd):
            if not (lam_low < lmbd < lam_high):
                return np.inf
            vals = 1.0 + lmbd * np.sin(x - xi_hat)
            if np.any(vals <= 0.0) or not np.all(np.isfinite(vals)):
                return np.inf
            return float(-np.sum(w * np.log(vals)))

        lambda_result = minimize_scalar(
            lambda_nll,
            bounds=lmbd_bounds,
            method="bounded",
        )
        if not lambda_result.success:
            raise RuntimeError("Failed to estimate skewness parameter `lmbd`.")
        lmbd_hat = float(np.clip(lambda_result.x, lam_low, lam_high))

        method_key = method.lower()
        alias = {"twostep": "two-step", "two_step": "two-step", "mle": "mle"}
        method_key = alias.get(method_key, method_key)
        if method_key not in {"two-step", "mle"}:
            raise ValueError("`method` must be either 'two-step' or 'mle'.")

        if method_key == "mle":
            refine = True

        info = {
            "base": base_info,
            "lambda_opt": {
                "success": bool(lambda_result.success),
                "nit": getattr(lambda_result, "nit", None),
                "nfev": getattr(lambda_result, "nfev", None),
            },
            "n_effective": float(n_eff),
        }

        if refine:
            bounds = [
                (0.0, 2.0 * np.pi),
                kappa_bounds,
                psi_bounds,
                lmbd_bounds,
            ]

            def total_nll(params):
                xi_param, kappa_param, psi_param, lmbd_param = params
                if not (kappa_bounds[0] <= kappa_param <= kappa_bounds[1]):
                    return np.inf
                if not (psi_bounds[0] <= psi_param <= psi_bounds[1]):
                    return np.inf
                if not (lmbd_bounds[0] < lmbd_param < lmbd_bounds[1]):
                    return np.inf
                xi_wrapped = float(np.mod(xi_param, 2.0 * np.pi))
                pdf_vals = self.pdf(x, xi_wrapped, kappa_param, psi_param, lmbd_param)
                if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)):
                    return np.inf
                return float(-np.sum(w * np.log(pdf_vals)))

            init = np.array([xi_hat, kappa_hat, psi_hat, lmbd_hat], dtype=float)
            result = minimize(
                total_nll,
                init,
                method=optimizer,
                bounds=bounds,
                **kwargs,
            )
            if not result.success:
                raise RuntimeError("Sine-skewed JP fit refinement failed: " + result.message)
            xi_hat = self._wrap_direction(float(result.x[0]))
            kappa_hat = float(np.clip(result.x[1], kappa_bounds[0], kappa_bounds[1]))
            psi_hat = float(np.clip(result.x[2], psi_bounds[0], psi_bounds[1]))
            lmbd_hat = float(np.clip(result.x[3], lmbd_bounds[0], lmbd_bounds[1]))
            info["refinement"] = {
                "success": bool(result.success),
                "nit": result.nit,
                "optimizer": optimizer,
            }

        final_pdf = self.pdf(x, xi_hat, kappa_hat, psi_hat, lmbd_hat)
        loglik = float(np.sum(w * np.log(final_pdf)))

        estimates = (xi_hat, kappa_hat, psi_hat, lmbd_hat)
        if return_info:
            info.update(
                {
                    "loglik": loglik,
                    "method": method_key,
                    "estimates": estimates,
                }
            )
            return estimates, info
        return estimates

pdf(x, xi, kappa, psi, lmbd, *args, **kwargs)

Probability density function of the Sine-Skewed Jones-Pewsey distribution.

\[ f(\theta) = c(\kappa,\psi)\Bigl(\cosh(\kappa\psi)+ \sinh(\kappa\psi)\cos(\theta-\xi)\Bigr)^{1/\psi} \bigl(1+\lambda \sin(\theta-\xi)\bigr). \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
xi float

Direction parameter (generally not the mean), 0 <= ξ <= 2*pi.

required
kappa float

Concentration parameter, κ >= 0. Higher values indicate a sharper peak.

required
psi float

Shape parameter, -∞ <= ψ <= ∞. When ψ=-1, the distribution reduces to the wrapped Cauchy, when ψ=0, von Mises, and when ψ=1, cardioid.

required
lmbd float

Skewness parameter, -1 < λ < 1. Controls the asymmetry introduced by the sine-skewing.

required

Returns:

Name Type Description
pdf_values float

Values of the probability density function at the specified points.

Source code in pycircstat2/distributions.py
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
def pdf(self, x, xi, kappa, psi, lmbd, *args, **kwargs):
    r"""
    Probability density function of the Sine-Skewed Jones-Pewsey distribution.

    $$
    f(\theta) = c(\kappa,\psi)\Bigl(\cosh(\kappa\psi)+
    \sinh(\kappa\psi)\cos(\theta-\xi)\Bigr)^{1/\psi}
    \bigl(1+\lambda \sin(\theta-\xi)\bigr).
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    xi : float
        Direction parameter (generally not the mean), 0 <= ξ <= 2*pi.
    kappa : float
        Concentration parameter, κ >= 0. Higher values indicate a sharper peak.
    psi : float
        Shape parameter, -∞ <= ψ <= ∞. When ψ=-1, the distribution reduces to the wrapped Cauchy,
        when ψ=0, von Mises, and when ψ=1, cardioid.
    lmbd : float
        Skewness parameter, -1 < λ < 1. Controls the asymmetry introduced by the sine-skewing.

    Returns
    -------
    pdf_values: float
        Values of the probability density function at the specified points.
    """

    return super().pdf(x, xi, kappa, psi, lmbd, *args, **kwargs)

cdf(x, xi, kappa, psi, lmbd, *args, **kwargs)

Cumulative distribution function of the sine-skewed Jones--Pewsey law.

No closed form is available; the implementation integrates the PDF on [0, 2π) using adaptive quadrature, honouring the symmetric JP and uniform limits when lambda or kappa approach zero.

Source code in pycircstat2/distributions.py
5615
5616
5617
5618
5619
5620
5621
5622
5623
def cdf(self, x, xi, kappa, psi, lmbd, *args, **kwargs):
    r"""
    Cumulative distribution function of the sine-skewed Jones--Pewsey law.

    No closed form is available; the implementation integrates the PDF on
    [0, 2π) using adaptive quadrature, honouring the symmetric JP and
    uniform limits when ``lambda`` or ``kappa`` approach zero.
    """
    return super().cdf(x, xi, kappa, psi, lmbd, *args, **kwargs)

ppf(q, xi, kappa, psi, lmbd, *args, **kwargs)

Quantile function of the sine-skewed Jones--Pewsey distribution.

The solver mirrors the symmetric JP inverse CDF while reusing the skew-aware CDF so that round-trip accuracy is preserved even for large skewness. Uniform and purely symmetric edge cases are delegated to the corresponding closed forms.

Source code in pycircstat2/distributions.py
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
def ppf(self, q, xi, kappa, psi, lmbd, *args, **kwargs):
    r"""
    Quantile function of the sine-skewed Jones--Pewsey distribution.

    The solver mirrors the symmetric JP inverse CDF while reusing the
    skew-aware CDF so that round-trip accuracy is preserved even for large
    skewness.  Uniform and purely symmetric edge cases are delegated to the
    corresponding closed forms.
    """
    return super().ppf(q, xi, kappa, psi, lmbd, *args, **kwargs)

rvs(xi, kappa, psi, lmbd, size=None, random_state=None)

Draw random variates from the sine-skewed Jones--Pewsey distribution.

Sampling follows the acceptance-rejection construction of Abe & Pewsey (2011): draw from the symmetric JP base and accept with probability \(\(\frac{1 + \lambda \sin\phi}{1 + |\lambda|}.\)\) This scheme is exact, automatically respects the skew symmetry, and retains the base sampler's efficiency.

Source code in pycircstat2/distributions.py
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
def rvs(self, xi, kappa, psi, lmbd, size=None, random_state=None):
    r"""
    Draw random variates from the sine-skewed Jones--Pewsey distribution.

    Sampling follows the acceptance-rejection construction of Abe & Pewsey
    (2011): draw from the symmetric JP base and accept with probability
    $$\frac{1 + \lambda \sin\phi}{1 + |\lambda|}.$$  This scheme is exact,
    automatically respects the skew symmetry, and retains the base
    sampler's efficiency.
    """
    return super().rvs(xi, kappa, psi, lmbd, size=size, random_state=random_state)

fit(data, *, weights=None, method='two-step', return_info=False, optimizer='L-BFGS-B', refine=False, psi_bounds=(-4.0, 4.0), kappa_bounds=(1e-06, 1000.0), lmbd_bounds=(-0.99, 0.99), base_kwargs=None, **kwargs)

Estimate sine-skewed JP parameters via a two-step maximum likelihood fit.

  1. Fit the symmetric JP base (xi, kappa, psi) using the MLE routine.
  2. Maximise the weighted log term sum log(1 + lambda sin(theta_i - xi)).
  3. Optionally refine all four parameters jointly (set refine=True).

The acceptance-rejection sampler used for the skewed density makes the likelihood well behaved across |lambda| < 1, while moment starts ensure stability near the uniform limit.

Source code in pycircstat2/distributions.py
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
def fit(
    self,
    data,
    *,
    weights=None,
    method="two-step",
    return_info=False,
    optimizer="L-BFGS-B",
    refine=False,
    psi_bounds=(-4.0, 4.0),
    kappa_bounds=(1e-6, 1e3),
    lmbd_bounds=(-0.99, 0.99),
    base_kwargs=None,
    **kwargs,
):
    r"""
    Estimate sine-skewed JP parameters via a two-step maximum likelihood fit.

    1. Fit the symmetric JP base (xi, kappa, psi) using the MLE routine.
    2. Maximise the weighted log term sum log(1 + lambda sin(theta_i - xi)).
    3. Optionally refine all four parameters jointly (set refine=True).

    The acceptance-rejection sampler used for the skewed density makes the
    likelihood well behaved across |lambda| < 1, while moment starts ensure
    stability near the uniform limit.
    """
    kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
    x = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
    if x.size == 0:
        raise ValueError("`data` must contain at least one observation.")

    if weights is None:
        w = np.ones_like(x, dtype=float)
    else:
        w = np.asarray(weights, dtype=float)
        if np.any(w < 0):
            raise ValueError("`weights` must be non-negative.")
        w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel()

    w_sum = float(np.sum(w))
    if not np.isfinite(w_sum) or w_sum <= 0:
        raise ValueError("Sum of weights must be positive.")
    n_eff = w_sum**2 / np.sum(w**2)

    base_kwargs = {} if base_kwargs is None else dict(base_kwargs)
    base_estimates, base_info = jonespewsey.fit(
        x,
        weights=w,
        method="mle",
        psi_bounds=psi_bounds,
        kappa_bounds=kappa_bounds,
        optimizer=optimizer,
        return_info=True,
        **base_kwargs,
    )
    xi_hat, kappa_hat, psi_hat = base_estimates

    lam_low, lam_high = lmbd_bounds

    def lambda_nll(lmbd):
        if not (lam_low < lmbd < lam_high):
            return np.inf
        vals = 1.0 + lmbd * np.sin(x - xi_hat)
        if np.any(vals <= 0.0) or not np.all(np.isfinite(vals)):
            return np.inf
        return float(-np.sum(w * np.log(vals)))

    lambda_result = minimize_scalar(
        lambda_nll,
        bounds=lmbd_bounds,
        method="bounded",
    )
    if not lambda_result.success:
        raise RuntimeError("Failed to estimate skewness parameter `lmbd`.")
    lmbd_hat = float(np.clip(lambda_result.x, lam_low, lam_high))

    method_key = method.lower()
    alias = {"twostep": "two-step", "two_step": "two-step", "mle": "mle"}
    method_key = alias.get(method_key, method_key)
    if method_key not in {"two-step", "mle"}:
        raise ValueError("`method` must be either 'two-step' or 'mle'.")

    if method_key == "mle":
        refine = True

    info = {
        "base": base_info,
        "lambda_opt": {
            "success": bool(lambda_result.success),
            "nit": getattr(lambda_result, "nit", None),
            "nfev": getattr(lambda_result, "nfev", None),
        },
        "n_effective": float(n_eff),
    }

    if refine:
        bounds = [
            (0.0, 2.0 * np.pi),
            kappa_bounds,
            psi_bounds,
            lmbd_bounds,
        ]

        def total_nll(params):
            xi_param, kappa_param, psi_param, lmbd_param = params
            if not (kappa_bounds[0] <= kappa_param <= kappa_bounds[1]):
                return np.inf
            if not (psi_bounds[0] <= psi_param <= psi_bounds[1]):
                return np.inf
            if not (lmbd_bounds[0] < lmbd_param < lmbd_bounds[1]):
                return np.inf
            xi_wrapped = float(np.mod(xi_param, 2.0 * np.pi))
            pdf_vals = self.pdf(x, xi_wrapped, kappa_param, psi_param, lmbd_param)
            if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)):
                return np.inf
            return float(-np.sum(w * np.log(pdf_vals)))

        init = np.array([xi_hat, kappa_hat, psi_hat, lmbd_hat], dtype=float)
        result = minimize(
            total_nll,
            init,
            method=optimizer,
            bounds=bounds,
            **kwargs,
        )
        if not result.success:
            raise RuntimeError("Sine-skewed JP fit refinement failed: " + result.message)
        xi_hat = self._wrap_direction(float(result.x[0]))
        kappa_hat = float(np.clip(result.x[1], kappa_bounds[0], kappa_bounds[1]))
        psi_hat = float(np.clip(result.x[2], psi_bounds[0], psi_bounds[1]))
        lmbd_hat = float(np.clip(result.x[3], lmbd_bounds[0], lmbd_bounds[1]))
        info["refinement"] = {
            "success": bool(result.success),
            "nit": result.nit,
            "optimizer": optimizer,
        }

    final_pdf = self.pdf(x, xi_hat, kappa_hat, psi_hat, lmbd_hat)
    loglik = float(np.sum(w * np.log(final_pdf)))

    estimates = (xi_hat, kappa_hat, psi_hat, lmbd_hat)
    if return_info:
        info.update(
            {
                "loglik": loglik,
                "method": method_key,
                "estimates": estimates,
            }
        )
        return estimates, info
    return estimates

jonespewsey_asym_gen

Bases: CircularContinuous

Asymmetric Extended Jones-Pewsey Distribution

This distribution is an extension of the Jones-Pewsey family, incorporating asymmetry through a secondary parameter \(\nu\). It is defined on the circular domain \([0, 2\pi)\).

jonespewsey-asymext

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Parameters must be scalar; cached normalisation tables are built per parameter set. Implementation from 4.3.12 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
class jonespewsey_asym_gen(CircularContinuous):
    r"""Asymmetric Extended Jones-Pewsey Distribution

    This distribution is an extension of the Jones-Pewsey family, incorporating asymmetry
    through a secondary parameter $\nu$. It is defined on the circular domain $[0, 2\pi)$.

    ![jonespewsey-asymext](../images/circ-mod-jonespewsey-asym.png)

    Methods
    -------
    pdf(x, xi, kappa, psi, nu)
        Probability density function.

    cdf(x, xi, kappa, psi, nu)
        Cumulative distribution function.


    Note
    ----
    Parameters must be scalar; cached normalisation tables are built per parameter set.
    Implementation from 4.3.12 of Pewsey et al. (2014)
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._sampler_cache = {}
        self._cdf_table_cache = {}

    def _validate_params(self, xi, kappa, psi, nu):
        xi_arr, kappa_arr, psi_arr, nu_arr = np.broadcast_arrays(xi, kappa, psi, nu)
        return (
            (xi_arr >= 0.0)
            & (xi_arr <= 2.0 * np.pi)
            & (kappa_arr >= 0.0)
            & np.isfinite(kappa_arr)
            & np.isfinite(psi_arr)
            & (nu_arr >= 0.0)
            & (nu_arr < 1.0)
        )

    def _argcheck(self, xi, kappa, psi, nu):
        try:
            return self._validate_params(xi, kappa, psi, nu)
        except ValueError:
            return False

    def _pdf(self, x, xi, kappa, psi, nu):
        x = np.asarray(x, dtype=float)
        xi_scalar = _jp_ensure_scalar(xi, "xi")
        kappa_scalar = _jp_ensure_scalar(kappa, "kappa")
        psi_scalar = _jp_ensure_scalar(psi, "psi")
        nu_scalar = _jp_ensure_scalar(nu, "nu")

        if abs(kappa_scalar) < _JP_KAPPA_TOL:
            return np.full_like(x, 1.0 / (2.0 * np.pi), dtype=float)

        norm = self._get_cached_normalizer(
            lambda: _c_jonespewsey_asym(xi_scalar, kappa_scalar, psi_scalar, nu_scalar),
            xi_scalar,
            kappa_scalar,
            psi_scalar,
            nu_scalar,
        )
        self._c = norm
        base = _kernel_jonespewsey_asym(x, xi_scalar, kappa_scalar, psi_scalar, nu_scalar)
        return norm * base

    def pdf(self, x, xi, kappa, psi, nu, *args, **kwargs):
        r"""
        Probability density function (PDF) of the Asymmetric Extended Jones-Pewsey distribution.

        The PDF is given by:

        $$
        f(\theta) = \frac{k(\theta; \xi, \kappa, \psi, \nu)}{c}
        $$

        where $k(\theta; \xi, \kappa, \psi, \nu)$ is the kernel function defined as:

        $$
        k(\theta; \xi, \kappa, \psi, \nu) =
        \begin{cases}
        \exp\left(\kappa \cos(\theta - \xi + \nu \cos(\theta - \xi))\right) & \text{if } \psi = 0 \\
        \left[\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \xi + \nu \cos(\theta - \xi))\right]^{1/\psi} & \text{if } \psi \neq 0
        \end{cases}
        $$

        and $c$ is the normalization constant:

        $$
        c = \int_{-\pi}^{\pi} k(\theta; \xi, \kappa, \psi, \nu) \, d\theta
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
        xi : float
            Direction parameter, $0 \leq \xi \leq 2\pi$. This typically represents the mode of the distribution.
        kappa : float
            Concentration parameter, $\kappa \geq 0$. Higher values result in a sharper peak around $\xi$.
        psi : float
            Shape parameter, $-\infty \leq \psi \leq \infty$. When $\psi = 0$, the distribution reduces to a simpler von Mises-like form.
        nu : float
            Asymmetry parameter, $0 \leq \nu < 1$. Introduces skewness in the circular distribution.

        Returns
        -------
        pdf_values : array_like
            Values of the probability density function at the specified points.

        Notes
        -----
        - The normalization constant $c$ is computed numerically using integration.
        - Special cases:
            - When $\psi = 0$, the kernel simplifies to the von Mises-like asymmetric form.
            - When $\kappa = 0$, the distribution becomes uniform on $[0, 2\pi)$.
        """
        return super().pdf(x, xi, kappa, psi, nu, *args, **kwargs)

    def _cdf(self, x, xi, kappa, psi, nu):
        wrapped = self._wrap_angles(x)
        arr = np.asarray(wrapped, dtype=float)
        flat = arr.reshape(-1)
        if flat.size == 0:
            return arr.astype(float)

        xi_val = _jp_ensure_scalar(xi, "xi")
        kappa_val = _jp_ensure_scalar(kappa, "kappa")
        psi_val = _jp_ensure_scalar(psi, "psi")
        nu_val = _jp_ensure_scalar(nu, "nu")

        two_pi = 2.0 * np.pi

        if kappa_val < _JP_KAPPA_TOL and abs(nu_val) < 1e-12:
            return jonespewsey.cdf(arr, mu=xi_val, kappa=kappa_val, psi=psi_val)

        phi_start = (-xi_val) % two_pi
        phi_end = (flat - xi_val) % two_pi

        phi_grid, cdf_grid = self._asym_cdf_table(xi_val, kappa_val, psi_val, nu_val)

        H_start = float(np.interp(phi_start, phi_grid, cdf_grid, left=0.0, right=1.0))
        H_end = np.interp(phi_end, phi_grid, cdf_grid, left=0.0, right=1.0)

        cdf = np.where(
            phi_end >= phi_start,
            np.clip(H_end - H_start, 0.0, 1.0),
            np.clip(1.0 - (H_start - H_end), 0.0, 1.0),
        )

        return cdf.reshape(arr.shape)

    def cdf(self, x, xi, kappa, psi, nu, *args, **kwargs):
        r"""
        Cumulative distribution function of the argument-warped JP family.

        The asymmetric transformation phi -> phi + nu cos(phi) is handled by
        precomputing a high-resolution trapezoidal cumulative table for each
        parameter set.  Interpolation of this table gives fast evaluations while
        preserving the limiting cases (nu -> 0 reduces to the symmetric JP CDF).
        """
        return super().cdf(x, xi, kappa, psi, nu, *args, **kwargs)

    def _ppf(self, q, xi, kappa, psi, nu):
        xi_val = _jp_ensure_scalar(xi, "xi")
        xi_val = float(np.mod(xi_val, 2.0 * np.pi))
        kappa_val = _jp_ensure_scalar(kappa, "kappa")
        psi_val = _jp_ensure_scalar(psi, "psi")
        nu_val = _jp_ensure_scalar(nu, "nu")

        two_pi = 2.0 * np.pi
        q_arr = np.asarray(q, dtype=float)
        if q_arr.size == 0:
            return q_arr.astype(float)

        flat = q_arr.reshape(-1)
        result = np.full_like(flat, np.nan, dtype=float)

        valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0)
        if np.any(valid):
            q_valid = flat[valid]
            boundary_lo = q_valid <= 0.0
            boundary_hi = q_valid >= 1.0
            interior = (~boundary_lo) & (~boundary_hi)
            theta_vals = np.zeros_like(q_valid)
            theta_vals[boundary_lo] = 0.0
            theta_vals[boundary_hi] = two_pi

            if np.any(interior):
                q_int = q_valid[interior]
                eps = 1e-15
                q_clipped = np.clip(q_int, eps, 1.0 - eps)
                if kappa_val < _JP_KAPPA_TOL and nu_val < 1e-12:
                    theta_vals[interior] = two_pi * q_clipped
                else:
                    theta_curr = two_pi * q_clipped
                    L = np.zeros_like(theta_curr)
                    H = np.full_like(theta_curr, two_pi)
                    tol_cdf = 1e-12
                    tol_theta = 1e-10
                    max_iter = 8

                    for _ in range(max_iter):
                        cdf_vals = np.asarray(
                            self.cdf(theta_curr, xi_val, kappa_val, psi_val, nu_val),
                            dtype=float,
                        )
                        pdf_vals = np.asarray(
                            self.pdf(theta_curr, xi_val, kappa_val, psi_val, nu_val),
                            dtype=float,
                        )
                        delta = cdf_vals - q_clipped
                        L = np.where(delta <= 0.0, theta_curr, L)
                        H = np.where(delta > 0.0, theta_curr, H)

                        converged = (np.abs(delta) <= tol_cdf) & ((H - L) <= tol_theta)
                        if np.all(converged):
                            break

                        denom = np.clip(pdf_vals, 1e-15, None)
                        step = np.clip(delta / denom, -np.pi, np.pi)
                        theta_next = theta_curr - step
                        midpoint = 0.5 * (L + H)
                        theta_next = np.where(
                            (theta_next <= L) | (theta_next >= H),
                            midpoint,
                            theta_next,
                        )
                        theta_curr = np.clip(theta_next, 0.0, two_pi)

                    residual = np.asarray(
                        self.cdf(theta_curr, xi_val, kappa_val, psi_val, nu_val),
                        dtype=float,
                    ) - q_clipped
                    mask = (np.abs(residual) > tol_cdf) | ((H - L) > tol_theta)
                    if np.any(mask):
                        theta_b = theta_curr.copy()
                        L_b = L.copy()
                        H_b = H.copy()
                        for _ in range(30):
                            if not np.any(mask):
                                break
                            mid = 0.5 * (L_b + H_b)
                            cdf_mid = np.asarray(
                                self.cdf(mid, xi_val, kappa_val, psi_val, nu_val),
                                dtype=float,
                            )
                            delta_mid = cdf_mid - q_clipped
                            take_upper = (delta_mid > 0.0) & mask
                            take_lower = (~take_upper) & mask
                            H_b = np.where(take_upper, mid, H_b)
                            L_b = np.where(take_lower, mid, L_b)
                            theta_b = np.where(mask, mid, theta_b)
                            mask = mask & (np.abs(delta_mid) > tol_cdf)
                        theta_curr = np.where(mask, 0.5 * (L_b + H_b), theta_b)

                    theta_vals[interior] = theta_curr

            result_vals = theta_vals
            result_vals[boundary_lo] = 0.0
            result_vals[boundary_hi] = two_pi
            result[valid] = result_vals

        return result.reshape(q_arr.shape)

    def ppf(self, q, xi, kappa, psi, nu, *args, **kwargs):
        r"""
        Quantile function of the asymmetric Jones--Pewsey distribution.

        Quantiles are obtained by the same safeguarded Newton iteration as in
        the symmetric case, with the warp-aware CDF supplying residuals.  When
        nu is effectively zero the method delegates to the symmetric JP solver.
        """
        return super().ppf(q, xi, kappa, psi, nu, *args, **kwargs)

    def _rvs(self, xi, kappa, psi, nu, size=None, random_state=None):
        rng = self._init_rng(random_state)

        xi_val = _jp_ensure_scalar(xi, "xi")
        xi_val = float(np.mod(xi_val, 2.0 * np.pi))
        kappa_val = _jp_ensure_scalar(kappa, "kappa")
        psi_val = _jp_ensure_scalar(psi, "psi")
        nu_val = _jp_ensure_scalar(nu, "nu")
        if not (0.0 <= nu_val < 1.0):
            raise ValueError("`nu` must lie in [0, 1).")

        if size is None:
            size_tuple = ()
            total = 1
        elif np.isscalar(size):
            size_tuple = (int(size),)
            total = int(size_tuple[0])
        else:
            size_tuple = tuple(int(s) for s in np.atleast_1d(size))
            total = int(np.prod(size_tuple))

        two_pi = 2.0 * np.pi
        if kappa_val < _JP_KAPPA_TOL:
            samples = rng.uniform(0.0, two_pi, size=total)
            return samples.reshape(size_tuple)

        if abs(psi_val) < _JP_PSI_TOL and nu_val < 1e-12:
            return vonmises.rvs(mu=xi_val, kappa=kappa_val, size=size_tuple or None, random_state=rng)

        kappa_env, envelope_const = self._asym_sampler_envelope(xi_val, kappa_val, psi_val, nu_val)
        samples = np.empty(total, dtype=float)
        filled = 0

        while filled < total:
            remaining = total - filled
            proposals = vonmises.rvs(
                mu=xi_val,
                kappa=kappa_env,
                size=remaining,
                random_state=rng,
            )
            target_vals = self.pdf(proposals, xi_val, kappa_val, psi_val, nu_val)
            proposal_vals = vonmises.pdf(proposals, mu=xi_val, kappa=kappa_env)
            ratio = np.where(proposal_vals > 0.0, target_vals / (envelope_const * proposal_vals), 0.0)
            u = rng.uniform(0.0, 1.0, size=remaining)
            accept = ratio >= u
            n_accept = int(np.sum(accept))
            if n_accept > 0:
                samples[filled:filled + n_accept] = proposals[accept][:n_accept]
                filled += n_accept

        return samples.reshape(size_tuple)

    def rvs(self, xi, kappa, psi, nu, size=None, random_state=None):
        r"""
        Draw random variates from the asymmetric Jones--Pewsey distribution.

        Sampling uses a curvature-matched von Mises envelope tuned via the
        optimisation helper, providing an exact acceptance-rejection scheme that
        works well across nu in [0, 1).  Uniform and symmetric limits are
        handled explicitly.
        """
        return super().rvs(xi, kappa, psi, nu, size=size, random_state=random_state)

    def _asym_sampler_envelope(self, xi, kappa, psi, nu):
        key = (float(np.mod(xi, 2.0 * np.pi)), float(kappa), float(psi), float(nu))
        cached = self._sampler_cache.get(key)
        if cached is not None:
            return cached

        kappa_env = _jp_effective_kappa(kappa, psi)
        phi_grid = np.linspace(0.0, 2.0 * np.pi, 2048, endpoint=False)
        theta_grid = np.mod(xi + phi_grid, 2.0 * np.pi)

        target_vals = self.pdf(theta_grid, xi, kappa, psi, nu)
        log_target = np.log(np.clip(target_vals, np.finfo(float).tiny, None))

        kappa_env, envelope_const = _optimize_vonmises_envelope(
            theta_grid,
            log_target,
            xi,
            max(kappa_env, 1e-6),
        )

        self._sampler_cache[key] = (kappa_env, envelope_const)
        return kappa_env, envelope_const

    def _asym_cdf_table(self, xi, kappa, psi, nu, grid_size=4096):
        key = (float(np.mod(xi, 2.0 * np.pi)), float(kappa), float(psi), float(nu), int(grid_size))
        cached = self._cdf_table_cache.get(key)
        if cached is not None:
            return cached

        phi_grid = np.linspace(0.0, 2.0 * np.pi, int(grid_size) + 1)
        theta = np.mod(xi + phi_grid, 2.0 * np.pi)
        pdf_vals = self.pdf(theta, xi, kappa, psi, nu)
        pdf_vals = np.asarray(pdf_vals, dtype=float)

        delta = (2.0 * np.pi) / float(grid_size)
        trap = 0.5 * (pdf_vals[:-1] + pdf_vals[1:]) * delta
        cdf_vals = np.empty_like(phi_grid)
        cdf_vals[0] = 0.0
        cdf_vals[1:] = np.cumsum(trap)
        total = cdf_vals[-1]
        if not np.isfinite(total) or total <= 0.0:
            total = 1.0
        cdf_vals /= total

        result = (phi_grid, cdf_vals)
        self._cdf_table_cache[key] = result
        return result

    def fit(
        self,
        data,
        *,
        weights=None,
        return_info=False,
        optimizer="L-BFGS-B",
        psi_bounds=(-4.0, 4.0),
        kappa_bounds=(1e-6, 1e3),
        nu_bounds=(0.0, 0.99),
        base_kwargs=None,
        **kwargs,
    ):
        r"""
        Estimate asymmetric JP parameters by maximum likelihood.

        The symmetric JP fit supplies starting values for (xi, kappa, psi) with
        nu initialised at zero.  The full four-parameter log-likelihood is then
        optimised under simple bounds, re-using the cached normalising constant
        and envelope machinery developed for the JP core.
        """
        kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
        x = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
        if x.size == 0:
            raise ValueError("`data` must contain at least one observation.")

        if weights is None:
            w = np.ones_like(x, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            if np.any(w < 0):
                raise ValueError("`weights` must be non-negative.")
            w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel()

        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0:
            raise ValueError("Sum of weights must be positive.")
        n_eff = w_sum**2 / np.sum(w**2)

        base_kwargs = {} if base_kwargs is None else dict(base_kwargs)
        init_estimates, base_info = jonespewsey.fit(
            x,
            weights=w,
            method="mle",
            psi_bounds=psi_bounds,
            kappa_bounds=kappa_bounds,
            optimizer=optimizer,
            return_info=True,
            **base_kwargs,
        )
        xi_init, kappa_init, psi_init = init_estimates
        nu_init = 0.0

        kappa_low, kappa_high = kappa_bounds
        psi_low, psi_high = psi_bounds
        nu_low, nu_high = nu_bounds

        def nll(params):
            xi_param, kappa_param, psi_param, nu_param = params
            if not (kappa_low <= kappa_param <= kappa_high):
                return np.inf
            if not (psi_low <= psi_param <= psi_high):
                return np.inf
            if not (nu_low <= nu_param < nu_high):
                return np.inf
            xi_wrapped = float(np.mod(xi_param, 2.0 * np.pi))
            pdf_vals = self.pdf(x, xi_wrapped, kappa_param, psi_param, nu_param)
            if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)):
                return np.inf
            return float(-np.sum(w * np.log(pdf_vals)))

        init = np.array([xi_init, kappa_init, psi_init, nu_init], dtype=float)
        bounds = [
            (0.0, 2.0 * np.pi),
            kappa_bounds,
            psi_bounds,
            nu_bounds,
        ]
        result = minimize(
            nll,
            init,
            method=optimizer,
            bounds=bounds,
            **kwargs,
        )
        if not result.success:
            raise RuntimeError("jonespewsey_asym.fit failed: " + result.message)

        xi_hat = self._wrap_direction(float(result.x[0]))
        kappa_hat = float(np.clip(result.x[1], kappa_low, kappa_high))
        psi_hat = float(np.clip(result.x[2], psi_low, psi_high))
        nu_hat = float(np.clip(result.x[3], nu_low, nu_high - 1e-9))

        final_pdf = self.pdf(x, xi_hat, kappa_hat, psi_hat, nu_hat)
        loglik = float(np.sum(w * np.log(final_pdf)))

        estimates = (xi_hat, kappa_hat, psi_hat, nu_hat)
        if return_info:
            info = {
                "base": base_info,
                "loglik": loglik,
                "converged": bool(result.success),
                "nit": result.nit,
                "optimizer": optimizer,
                "n_effective": float(n_eff),
            }
            return estimates, info
        return estimates

pdf(x, xi, kappa, psi, nu, *args, **kwargs)

Probability density function (PDF) of the Asymmetric Extended Jones-Pewsey distribution.

The PDF is given by:

\[ f(\theta) = \frac{k(\theta; \xi, \kappa, \psi, \nu)}{c} \]

where \(k(\theta; \xi, \kappa, \psi, \nu)\) is the kernel function defined as:

\[ k(\theta; \xi, \kappa, \psi, \nu) = \begin{cases} \exp\left(\kappa \cos(\theta - \xi + \nu \cos(\theta - \xi))\right) & \text{if } \psi = 0 \\ \left[\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \xi + \nu \cos(\theta - \xi))\right]^{1/\psi} & \text{if } \psi \neq 0 \end{cases} \]

and \(c\) is the normalization constant:

\[ c = \int_{-\pi}^{\pi} k(\theta; \xi, \kappa, \psi, \nu) \, d\theta \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the PDF, defined on the interval \([0, 2\pi)\).

required
xi float

Direction parameter, \(0 \leq \xi \leq 2\pi\). This typically represents the mode of the distribution.

required
kappa float

Concentration parameter, \(\kappa \geq 0\). Higher values result in a sharper peak around \(\xi\).

required
psi float

Shape parameter, \(-\infty \leq \psi \leq \infty\). When \(\psi = 0\), the distribution reduces to a simpler von Mises-like form.

required
nu float

Asymmetry parameter, \(0 \leq \nu < 1\). Introduces skewness in the circular distribution.

required

Returns:

Name Type Description
pdf_values array_like

Values of the probability density function at the specified points.

Notes
  • The normalization constant \(c\) is computed numerically using integration.
  • Special cases:
    • When \(\psi = 0\), the kernel simplifies to the von Mises-like asymmetric form.
    • When \(\kappa = 0\), the distribution becomes uniform on \([0, 2\pi)\).
Source code in pycircstat2/distributions.py
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
def pdf(self, x, xi, kappa, psi, nu, *args, **kwargs):
    r"""
    Probability density function (PDF) of the Asymmetric Extended Jones-Pewsey distribution.

    The PDF is given by:

    $$
    f(\theta) = \frac{k(\theta; \xi, \kappa, \psi, \nu)}{c}
    $$

    where $k(\theta; \xi, \kappa, \psi, \nu)$ is the kernel function defined as:

    $$
    k(\theta; \xi, \kappa, \psi, \nu) =
    \begin{cases}
    \exp\left(\kappa \cos(\theta - \xi + \nu \cos(\theta - \xi))\right) & \text{if } \psi = 0 \\
    \left[\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \xi + \nu \cos(\theta - \xi))\right]^{1/\psi} & \text{if } \psi \neq 0
    \end{cases}
    $$

    and $c$ is the normalization constant:

    $$
    c = \int_{-\pi}^{\pi} k(\theta; \xi, \kappa, \psi, \nu) \, d\theta
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
    xi : float
        Direction parameter, $0 \leq \xi \leq 2\pi$. This typically represents the mode of the distribution.
    kappa : float
        Concentration parameter, $\kappa \geq 0$. Higher values result in a sharper peak around $\xi$.
    psi : float
        Shape parameter, $-\infty \leq \psi \leq \infty$. When $\psi = 0$, the distribution reduces to a simpler von Mises-like form.
    nu : float
        Asymmetry parameter, $0 \leq \nu < 1$. Introduces skewness in the circular distribution.

    Returns
    -------
    pdf_values : array_like
        Values of the probability density function at the specified points.

    Notes
    -----
    - The normalization constant $c$ is computed numerically using integration.
    - Special cases:
        - When $\psi = 0$, the kernel simplifies to the von Mises-like asymmetric form.
        - When $\kappa = 0$, the distribution becomes uniform on $[0, 2\pi)$.
    """
    return super().pdf(x, xi, kappa, psi, nu, *args, **kwargs)

cdf(x, xi, kappa, psi, nu, *args, **kwargs)

Cumulative distribution function of the argument-warped JP family.

The asymmetric transformation phi -> phi + nu cos(phi) is handled by precomputing a high-resolution trapezoidal cumulative table for each parameter set. Interpolation of this table gives fast evaluations while preserving the limiting cases (nu -> 0 reduces to the symmetric JP CDF).

Source code in pycircstat2/distributions.py
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
def cdf(self, x, xi, kappa, psi, nu, *args, **kwargs):
    r"""
    Cumulative distribution function of the argument-warped JP family.

    The asymmetric transformation phi -> phi + nu cos(phi) is handled by
    precomputing a high-resolution trapezoidal cumulative table for each
    parameter set.  Interpolation of this table gives fast evaluations while
    preserving the limiting cases (nu -> 0 reduces to the symmetric JP CDF).
    """
    return super().cdf(x, xi, kappa, psi, nu, *args, **kwargs)

ppf(q, xi, kappa, psi, nu, *args, **kwargs)

Quantile function of the asymmetric Jones--Pewsey distribution.

Quantiles are obtained by the same safeguarded Newton iteration as in the symmetric case, with the warp-aware CDF supplying residuals. When nu is effectively zero the method delegates to the symmetric JP solver.

Source code in pycircstat2/distributions.py
6219
6220
6221
6222
6223
6224
6225
6226
6227
def ppf(self, q, xi, kappa, psi, nu, *args, **kwargs):
    r"""
    Quantile function of the asymmetric Jones--Pewsey distribution.

    Quantiles are obtained by the same safeguarded Newton iteration as in
    the symmetric case, with the warp-aware CDF supplying residuals.  When
    nu is effectively zero the method delegates to the symmetric JP solver.
    """
    return super().ppf(q, xi, kappa, psi, nu, *args, **kwargs)

rvs(xi, kappa, psi, nu, size=None, random_state=None)

Draw random variates from the asymmetric Jones--Pewsey distribution.

Sampling uses a curvature-matched von Mises envelope tuned via the optimisation helper, providing an exact acceptance-rejection scheme that works well across nu in [0, 1). Uniform and symmetric limits are handled explicitly.

Source code in pycircstat2/distributions.py
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
def rvs(self, xi, kappa, psi, nu, size=None, random_state=None):
    r"""
    Draw random variates from the asymmetric Jones--Pewsey distribution.

    Sampling uses a curvature-matched von Mises envelope tuned via the
    optimisation helper, providing an exact acceptance-rejection scheme that
    works well across nu in [0, 1).  Uniform and symmetric limits are
    handled explicitly.
    """
    return super().rvs(xi, kappa, psi, nu, size=size, random_state=random_state)

fit(data, *, weights=None, return_info=False, optimizer='L-BFGS-B', psi_bounds=(-4.0, 4.0), kappa_bounds=(1e-06, 1000.0), nu_bounds=(0.0, 0.99), base_kwargs=None, **kwargs)

Estimate asymmetric JP parameters by maximum likelihood.

The symmetric JP fit supplies starting values for (xi, kappa, psi) with nu initialised at zero. The full four-parameter log-likelihood is then optimised under simple bounds, re-using the cached normalising constant and envelope machinery developed for the JP core.

Source code in pycircstat2/distributions.py
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
def fit(
    self,
    data,
    *,
    weights=None,
    return_info=False,
    optimizer="L-BFGS-B",
    psi_bounds=(-4.0, 4.0),
    kappa_bounds=(1e-6, 1e3),
    nu_bounds=(0.0, 0.99),
    base_kwargs=None,
    **kwargs,
):
    r"""
    Estimate asymmetric JP parameters by maximum likelihood.

    The symmetric JP fit supplies starting values for (xi, kappa, psi) with
    nu initialised at zero.  The full four-parameter log-likelihood is then
    optimised under simple bounds, re-using the cached normalising constant
    and envelope machinery developed for the JP core.
    """
    kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
    x = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
    if x.size == 0:
        raise ValueError("`data` must contain at least one observation.")

    if weights is None:
        w = np.ones_like(x, dtype=float)
    else:
        w = np.asarray(weights, dtype=float)
        if np.any(w < 0):
            raise ValueError("`weights` must be non-negative.")
        w = np.broadcast_to(w, x.shape).astype(float, copy=False).ravel()

    w_sum = float(np.sum(w))
    if not np.isfinite(w_sum) or w_sum <= 0:
        raise ValueError("Sum of weights must be positive.")
    n_eff = w_sum**2 / np.sum(w**2)

    base_kwargs = {} if base_kwargs is None else dict(base_kwargs)
    init_estimates, base_info = jonespewsey.fit(
        x,
        weights=w,
        method="mle",
        psi_bounds=psi_bounds,
        kappa_bounds=kappa_bounds,
        optimizer=optimizer,
        return_info=True,
        **base_kwargs,
    )
    xi_init, kappa_init, psi_init = init_estimates
    nu_init = 0.0

    kappa_low, kappa_high = kappa_bounds
    psi_low, psi_high = psi_bounds
    nu_low, nu_high = nu_bounds

    def nll(params):
        xi_param, kappa_param, psi_param, nu_param = params
        if not (kappa_low <= kappa_param <= kappa_high):
            return np.inf
        if not (psi_low <= psi_param <= psi_high):
            return np.inf
        if not (nu_low <= nu_param < nu_high):
            return np.inf
        xi_wrapped = float(np.mod(xi_param, 2.0 * np.pi))
        pdf_vals = self.pdf(x, xi_wrapped, kappa_param, psi_param, nu_param)
        if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)):
            return np.inf
        return float(-np.sum(w * np.log(pdf_vals)))

    init = np.array([xi_init, kappa_init, psi_init, nu_init], dtype=float)
    bounds = [
        (0.0, 2.0 * np.pi),
        kappa_bounds,
        psi_bounds,
        nu_bounds,
    ]
    result = minimize(
        nll,
        init,
        method=optimizer,
        bounds=bounds,
        **kwargs,
    )
    if not result.success:
        raise RuntimeError("jonespewsey_asym.fit failed: " + result.message)

    xi_hat = self._wrap_direction(float(result.x[0]))
    kappa_hat = float(np.clip(result.x[1], kappa_low, kappa_high))
    psi_hat = float(np.clip(result.x[2], psi_low, psi_high))
    nu_hat = float(np.clip(result.x[3], nu_low, nu_high - 1e-9))

    final_pdf = self.pdf(x, xi_hat, kappa_hat, psi_hat, nu_hat)
    loglik = float(np.sum(w * np.log(final_pdf)))

    estimates = (xi_hat, kappa_hat, psi_hat, nu_hat)
    if return_info:
        info = {
            "base": base_info,
            "loglik": loglik,
            "converged": bool(result.success),
            "nit": result.nit,
            "optimizer": optimizer,
            "n_effective": float(n_eff),
        }
        return estimates, info
    return estimates

inverse_batschelet_gen

Bases: CircularContinuous

Inverse Batschelet Distribution

inverse-batschelet

The inverse Batschelet family (Pewsey, Neuhaüser & Ruxton, 2014, §4.3.13) extends the von Mises distribution by applying two inverse angular warps: a "peakedness" transform controlled by \(\nu\), and an inverse Batschelet skew transform governed by \(\lambda\). The resulting density on \([0, 2\pi)\) takes the form

\[ f(\theta) = c(\kappa, \lambda) \exp\left[\kappa \cos\left(a\,t_\nu^{-1}(\varphi) + b\,s_\lambda^{-1}\bigl(t_\nu^{-1}(\varphi)\bigr)\right)\right], \]

where \(\varphi = (\theta - \xi) \bmod 2\pi - \pi\), \(a = \tfrac{1 - \lambda}{1 + \lambda}\), \(b = \tfrac{2\lambda}{1 + \lambda}\), and the normalising constant \(c(\kappa, \lambda)\) depends only on \(\kappa\) and \(\lambda\). Setting \(\nu = \lambda = 0\) recovers the von Mises distribution, while \(\kappa \to 0\) yields the circular uniform law. Parameters must be scalar; cached normalisation tables are built per parameter set.

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

ppf

Percent-point function (inverse CDF).

rvs

Random variates via von Mises acceptance–rejection.

fit

Moments or maximum-likelihood parameter estimation.

Source code in pycircstat2/distributions.py
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
class inverse_batschelet_gen(CircularContinuous):
    r"""Inverse Batschelet Distribution

    ![inverse-batschelet](../images/circ-mod-inverse-batschelet.png)

    The inverse Batschelet family (Pewsey, Neuhaüser & Ruxton, 2014, §4.3.13)
    extends the von Mises distribution by applying two inverse angular warps:
    a "peakedness" transform controlled by $\nu$, and an inverse
    Batschelet skew transform governed by $\lambda$. The resulting density on
    $[0, 2\pi)$ takes the form

    $$
    f(\theta) = c(\kappa, \lambda)
    \exp\left[\kappa \cos\left(a\,t_\nu^{-1}(\varphi) + b\,s_\lambda^{-1}\bigl(t_\nu^{-1}(\varphi)\bigr)\right)\right],
    $$

    where $\varphi = (\theta - \xi) \bmod 2\pi - \pi$,
    $a = \tfrac{1 - \lambda}{1 + \lambda}$,
    $b = \tfrac{2\lambda}{1 + \lambda}$, and the normalising constant
    $c(\kappa, \lambda)$ depends only on $\kappa$ and $\lambda$.
    Setting $\nu = \lambda = 0$ recovers the von Mises distribution, while
    $\kappa \to 0$ yields the circular uniform law. Parameters must be scalar;
    cached normalisation tables are built per parameter set.

    Methods
    -------
    pdf(x, xi, kappa, nu, lmbd)
        Probability density function.

    cdf(x, xi, kappa, nu, lmbd)
        Cumulative distribution function.

    ppf(q, xi, kappa, nu, lmbd)
        Percent-point function (inverse CDF).

    rvs(xi, kappa, nu, lmbd, size=None, random_state=None)
        Random variates via von Mises acceptance–rejection.

    fit(data, *, method='mle', ...)
        Moments or maximum-likelihood parameter estimation.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._invbat_table_cache = {}
        self._invbat_sampler_cache = {}

    def _clear_normalization_cache(self):
        super()._clear_normalization_cache()
        self._invbat_table_cache = {}
        self._invbat_sampler_cache = {}

    def _validate_params(self, xi, kappa, nu, lmbd):
        xi_arr, kappa_arr, nu_arr, lmbd_arr = np.broadcast_arrays(xi, kappa, nu, lmbd)
        return (
            (xi_arr >= 0.0)
            & (xi_arr <= 2.0 * np.pi)
            & (kappa_arr >= 0.0)
            & np.isfinite(kappa_arr)
            & (nu_arr >= -1.0)
            & (nu_arr <= 1.0)
            & (lmbd_arr >= -1.0)
            & (lmbd_arr <= 1.0)
        )

    def _argcheck(self, xi, kappa, nu, lmbd):
        try:
            return self._validate_params(xi, kappa, nu, lmbd)
        except ValueError:
            return False

    def _pdf(self, x, xi, kappa, nu, lmbd):
        scalar_input = np.isscalar(x)
        x_arr = np.asarray([x], dtype=float) if scalar_input else np.asarray(x, dtype=float)
        if x_arr.size == 0:
            return x_arr.astype(float)

        xi_val = _invbat_ensure_scalar(xi, "xi")
        kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER))
        nu_val = _invbat_ensure_scalar(nu, "nu")
        lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd")

        if not (
            np.isfinite(xi_val)
            and np.isfinite(kappa_val)
            and np.isfinite(nu_val)
            and np.isfinite(lmbd_val)
        ):
            result = np.full_like(x_arr, np.nan, dtype=float)
            return float(result[0]) if scalar_input else result

        if kappa_val <= _INVBAT_KAPPA_TOL:
            self._c = 1.0 / (2.0 * np.pi)
            result = np.full_like(x_arr, self._c, dtype=float)
            return float(result[0]) if scalar_input else result

        normalizer = self._get_cached_normalizer(
            lambda: _c_invbatschelet(kappa_val, lmbd_val),
            kappa_val,
            lmbd_val,
        )
        if not np.isfinite(normalizer) or normalizer <= 0.0:
            normalizer = _c_invbatschelet_numeric(kappa_val, lmbd_val, grid_size=_INVBAT_NUMERIC_GRID)
        self._c = normalizer

        phi = _tnu(x_arr, nu_val, xi_val)
        skew = _slmbdinv(phi, lmbd_val)

        if np.isclose(lmbd_val, -1.0):
            log_kernel = kappa_val * np.cos(phi - np.sin(phi))
        else:
            con1 = (1.0 - lmbd_val) / (1.0 + lmbd_val)
            con2 = (2.0 * lmbd_val) / (1.0 + lmbd_val)
            log_kernel = kappa_val * np.cos(con1 * phi + con2 * skew)

        pdf_vals = normalizer * np.exp(log_kernel)
        pdf_vals = np.clip(pdf_vals, 0.0, None).astype(float, copy=False)

        if scalar_input:
            return float(pdf_vals.reshape(-1)[0])
        return pdf_vals

    def pdf(self, x, xi, kappa, nu, lmbd, *args, **kwargs):
        r"""
        Probability density function (PDF) of the inverse Batschelet distribution.

        Let

        - $\varphi = ((\theta - \xi + \pi) \bmod 2\pi) - \pi$,
        - $t_\nu^{-1}(\varphi)$ solve $y - \nu (1 + \cos y) = \varphi$,
        - $s_\lambda^{-1}(\cdot)$ solve $u - \tfrac{1 + \lambda}{2} \sin u = \cdot$,

        and set
        $\phi^\star = t_\nu^{-1}(\varphi)$,
        $u^\star = s_\lambda^{-1}(\phi^\star)$,
        $a = \tfrac{1 - \lambda}{1 + \lambda}$,
        $b = \tfrac{2 \lambda}{1 + \lambda}$.
        The inverse Batschelet density is

        $$
        f(\theta) = c(\kappa, \lambda)
        \exp\bigl[\kappa \cos\bigl(a\,\phi^\star + b\,u^\star\bigr)\bigr],
        $$

        where $c(\kappa,\lambda)$ is the normalising constant (independent of
        $\xi$ and $\nu$). For $\kappa \rightarrow 0$ the distribution reduces to
        the circular uniform density $1/(2\pi)$.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
        xi : float
            Direction parameter, $0 \leq \xi \leq 2\pi$.
        kappa : float
            Concentration parameter, $\kappa \geq 0$. Higher values result in sharper peaks around $\xi$.
        nu : float
            Shape parameter, $-1 \leq \nu \leq 1$. Controls asymmetry through angular transformation.
        lmbd : float
            Skewness parameter, $-1 \leq \lambda \leq 1$. Controls the degree of skewness in the distribution.

        Returns
        -------
        pdf_values : array_like
            Values of the probability density function at the specified points.
        """
        return super().pdf(x, xi, kappa, nu, lmbd, *args, **kwargs)

    def _cdf(self, x, xi, kappa, nu, lmbd):
        wrapped = self._wrap_angles(x)
        arr = np.asarray(wrapped, dtype=float)
        flat = arr.reshape(-1)

        if flat.size == 0:
            return arr.astype(float)

        xi_val = _invbat_ensure_scalar(xi, "xi")
        kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER))
        nu_val = _invbat_ensure_scalar(nu, "nu")
        lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd")

        if not (
            np.isfinite(xi_val)
            and np.isfinite(kappa_val)
            and np.isfinite(nu_val)
            and np.isfinite(lmbd_val)
        ):
            return np.full_like(arr, np.nan, dtype=float)

        two_pi = 2.0 * np.pi

        if kappa_val <= _INVBAT_KAPPA_TOL:
            cdf_flat = flat / two_pi
        else:
            table = self._get_invbat_table(kappa_val, nu_val, lmbd_val)
            phi = ((flat - xi_val + np.pi) % two_pi) - np.pi
            phi_start = ((-xi_val + np.pi) % two_pi) - np.pi
            H = table["cdf_interp"](phi)
            H_start = float(table["cdf_interp"](phi_start))
            diff = H - H_start
            cdf_flat = np.where(diff < 0.0, diff + 1.0, diff)
            cdf_flat = np.clip(cdf_flat, 0.0, 1.0)

        if arr.ndim == 0:
            value = float(cdf_flat[0])
            if np.isclose(float(wrapped), two_pi, rtol=0.0, atol=1e-12):
                return 1.0
        else:
            value = cdf_flat.reshape(arr.shape)
            mask_upper = np.isclose(arr, two_pi, rtol=0.0, atol=1e-12)
            if np.any(mask_upper):
                value = value.copy()
                value[mask_upper] = 1.0
        return value

    def cdf(self, x, xi, kappa, nu, lmbd, *args, **kwargs):
        r"""
        Cumulative distribution function of the inverse Batschelet distribution.

        The implementation precomputes the normalised primitive on a periodic grid
        in the centred angle $\varphi = (\theta - \xi) \bmod 2\pi - \pi$. For each
        grid node, the inverse peakedness transform $t_\nu^{-1}$ and inverse
        Batschelet skew $s_\lambda^{-1}$ are evaluated, and the resulting kernel is
        accumulated via a trapezoidal rule. The cumulative table is cached per
        parameter triple $(\kappa, \nu, \lambda)$, enabling $O(1)$ queries after the
        initial $O(N)$ precomputation. The limit $\kappa \to 0$ reduces to the
        circular uniform CDF $\theta / (2\pi)$.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        xi : float
            Direction parameter, $0 \leq \xi \leq 2\pi$.
        kappa : float
            Concentration parameter, $\kappa \geq 0$.
        nu : float
            Shape parameter, $-1 \leq \nu \leq 1$.
        lmbd : float
            Skewness parameter, $-1 \leq \lambda \leq 1$.

        Returns
        -------
        cdf_values : array_like
            Cumulative probabilities corresponding to `x`.
        """
        xi_val = _invbat_ensure_scalar(xi, "xi")
        kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER))
        nu_val = _invbat_ensure_scalar(nu, "nu")
        lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd")
        return super().cdf(x, xi_val, kappa_val, nu_val, lmbd_val, *args, **kwargs)

    def _ppf(self, q, xi, kappa, nu, lmbd):
        xi_val = _invbat_ensure_scalar(xi, "xi")
        kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER))
        nu_val = _invbat_ensure_scalar(nu, "nu")
        lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd")

        q_arr = np.asarray(q, dtype=float)
        flat = q_arr.reshape(-1)
        if flat.size == 0:
            return q_arr.astype(float)

        two_pi = 2.0 * np.pi
        result = np.full_like(flat, np.nan, dtype=float)

        valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0)
        if not np.any(valid):
            shaped = result.reshape(q_arr.shape)
            return float(shaped) if q_arr.ndim == 0 else shaped

        q_valid = flat[valid]
        close_zero = np.isclose(q_valid, 0.0, rtol=0.0, atol=1e-12)
        close_one = np.isclose(q_valid, 1.0, rtol=0.0, atol=1e-12)

        if kappa_val <= _INVBAT_KAPPA_TOL:
            theta = (two_pi * q_valid) % two_pi
            if np.any(close_zero):
                theta[close_zero] = 0.0
            if np.any(close_one):
                theta[close_one] = two_pi
            result[valid] = theta
        else:
            table = self._get_invbat_table(kappa_val, nu_val, lmbd_val)
            phi_grid = table["phi"]
            cdf_grid = table["cdf"]
            cdf_interp = table["cdf_interp"]
            inv_interp = table["inv_cdf_interp"]
            pdf_interp = table["pdf_interp"]

            phi_start = ((-xi_val + np.pi) % two_pi) - np.pi
            H_start = float(cdf_interp(phi_start))
            targets = (H_start + q_valid) % 1.0

            phi_candidates = (
                inv_interp(targets)
                if inv_interp is not None
                else np.interp(targets, cdf_grid, phi_grid, left=phi_grid[0], right=phi_grid[-1])
            )

            theta_vals = np.empty_like(q_valid)
            for idx, (target, phi0) in enumerate(zip(targets, phi_candidates)):
                if close_zero[idx]:
                    theta_vals[idx] = 0.0
                    continue
                if close_one[idx]:
                    theta_vals[idx] = two_pi
                    continue

                i_hi = int(np.clip(np.searchsorted(cdf_grid, target, side="right"), 1, len(phi_grid) - 1))
                phi_lo = float(phi_grid[i_hi - 1])
                phi_hi = float(phi_grid[i_hi])
                phi = float(np.clip(phi0, phi_lo, phi_hi))

                for _ in range(_INVBAT_NEWTON_MAXITER):
                    H_phi = float(cdf_interp(phi))
                    residual = H_phi - target
                    pdf_val = float(pdf_interp(phi))
                    pdf_val = max(pdf_val, np.finfo(float).tiny)

                    if abs(residual) <= _INVBAT_NEWTON_TOL and (phi_hi - phi_lo) <= _INVBAT_NEWTON_WIDTH_TOL:
                        break

                    if residual > 0.0:
                        phi_hi = min(phi_hi, phi)
                    else:
                        phi_lo = max(phi_lo, phi)

                    step = residual / pdf_val
                    phi_candidate = phi - step
                    if not np.isfinite(phi_candidate) or phi_candidate <= phi_lo or phi_candidate >= phi_hi:
                        phi_candidate = 0.5 * (phi_lo + phi_hi)
                    phi = float(np.clip(phi_candidate, phi_lo, phi_hi))

                theta_vals[idx] = (xi_val + phi) % two_pi

            result[valid] = theta_vals

        shaped = result.reshape(q_arr.shape)
        if q_arr.ndim == 0:
            return float(shaped)
        return shaped

    def ppf(self, q, xi, kappa, nu, lmbd, *args, **kwargs):
        r"""
        Percent-point function (quantile) of the inverse Batschelet distribution.

        Quantiles are obtained by inverting the cached cumulative table described in
        `cdf`. A monotone initial guess supplied by the table inverse is refined
        with safeguarded Newton steps that leverage the tabulated density, while
        preserving a bracketing interval. For $\kappa \rightarrow 0$, the quantile
        reduces to the linear uniform mapping $2\pi q$.

        Parameters
        ----------
        q : array_like
            Quantiles to evaluate (0 <= q <= 1).
        xi : float
            Direction parameter, $0 \leq \xi \leq 2\pi$.
        kappa : float
            Concentration parameter, $\kappa \geq 0$.
        nu : float
            Shape parameter, $-1 \leq \nu \leq 1$.
        lmbd : float
            Skewness parameter, $-1 \leq \lambda \leq 1$.

        Returns
        -------
        ppf_values : array_like
            Angles corresponding to the probabilities in `q`.
        """
        xi_val = _invbat_ensure_scalar(xi, "xi")
        kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER))
        nu_val = _invbat_ensure_scalar(nu, "nu")
        lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd")
        return super().ppf(q, xi_val, kappa_val, nu_val, lmbd_val, *args, **kwargs)

    def _get_invbat_sampler_params(self, kappa, nu, lmbd):
        key = (float(kappa), float(nu), float(lmbd))
        params = self._invbat_sampler_cache.get(key)
        if params is not None:
            return params

        table = self._get_invbat_table(kappa, nu, lmbd)
        phi = table["phi"]
        pdf = table["pdf"]
        log_pdf = np.log(np.clip(pdf, np.finfo(float).tiny, None))

        idx0 = int(np.argmin(np.abs(phi)))
        if idx0 == 0:
            idx0 = 1
        elif idx0 == phi.size - 1:
            idx0 = phi.size - 2

        h1 = phi[idx0] - phi[idx0 - 1]
        h2 = phi[idx0 + 1] - phi[idx0]
        if not np.isfinite(h1) or not np.isfinite(h2) or h1 == 0.0 or h2 == 0.0:
            curvature = max(kappa, 1.0)
        else:
            d2 = (
                log_pdf[idx0 + 1]
                - 2.0 * log_pdf[idx0]
                + log_pdf[idx0 - 1]
            ) / ((0.5 * (h1 + h2)) ** 2)
            curvature = max(-d2, 1e-3)

        kappa_env = float(np.clip(curvature, _INVBAT_ENV_MIN_KAPPA, _INVBAT_KAPPA_UPPER))
        log_vm_norm = np.log(2.0 * np.pi) + np.log(i0e(kappa_env)) + kappa_env
        log_ratio = log_pdf + log_vm_norm - kappa_env * np.cos(phi)
        log_multiplier = float(np.max(log_ratio))
        multiplier = float(np.exp(log_multiplier) * 1.02)

        params = {
            "kappa_env": kappa_env,
            "log_vm_norm": log_vm_norm,
            "log_multiplier": np.log(multiplier),
            "multiplier": multiplier,
        }
        self._invbat_sampler_cache[key] = params
        return params

    def _rvs(self, xi, kappa, nu, lmbd, size=None, random_state=None):
        rng = self._init_rng(random_state)

        xi_val = float(np.mod(_invbat_ensure_scalar(xi, "xi"), 2.0 * np.pi))
        kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER))
        nu_val = _invbat_ensure_scalar(nu, "nu")
        lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd")

        if not (
            np.isfinite(xi_val)
            and np.isfinite(kappa_val)
            and np.isfinite(nu_val)
            and np.isfinite(lmbd_val)
        ):
            raise ValueError("`xi`, `kappa`, `nu`, and `lmbd` must be finite scalars.")

        if size is None:
            shape = ()
            total = 1
        else:
            if np.isscalar(size):
                shape = (int(size),)
            else:
                shape = tuple(int(dim) for dim in np.atleast_1d(size))
            total = int(np.prod(shape, dtype=int))
            if total < 0:
                raise ValueError("`size` must describe a non-negative number of samples.")

        two_pi = 2.0 * np.pi

        if total == 0:
            empty = np.empty(shape, dtype=float)
            return float(empty) if empty.ndim == 0 else empty

        if kappa_val <= _INVBAT_KAPPA_TOL:
            samples = rng.uniform(0.0, two_pi, size=shape)
            return float(samples) if samples.ndim == 0 else samples

        table = self._get_invbat_table(kappa_val, nu_val, lmbd_val)
        sampler = self._get_invbat_sampler_params(kappa_val, nu_val, lmbd_val)
        kappa_env = sampler["kappa_env"]
        log_vm_norm = sampler["log_vm_norm"]
        log_multiplier = sampler["log_multiplier"]
        pdf_interp = table["pdf_interp"]

        samples = np.empty(total, dtype=float)
        filled = 0
        batch_base = max(8, min(4 * total, 4096))

        while filled < total:
            batch = min(batch_base, total - filled) if filled > 0 else batch_base
            proposals = rng.vonmises(xi_val, kappa_env, size=batch)
            phi = ((proposals - xi_val + np.pi) % two_pi) - np.pi

            pdf_vals = np.clip(pdf_interp(phi), np.finfo(float).tiny, None)
            log_target = np.log(pdf_vals)
            log_env = kappa_env * np.cos(phi) - log_vm_norm
            log_accept = log_target - log_env - log_multiplier

            accept_mask = np.log(rng.random(size=batch)) <= log_accept
            if not np.any(accept_mask):
                continue

            accepted = proposals[accept_mask]
            take = min(accepted.size, total - filled)
            samples[filled : filled + take] = accepted[:take]
            filled += take

        samples = np.mod(samples, two_pi)
        samples = samples.reshape(shape)
        if samples.ndim == 0:
            return float(samples)
        return samples

    def rvs(self, xi=None, kappa=None, nu=None, lmbd=None, size=None, random_state=None):
        r"""
        Draw random variates from the inverse Batschelet distribution.

        Sampling proceeds by acceptance--rejection with a von Mises envelope whose
        concentration is matched to the curvature of the inverse Batschelet kernel at
        the mode. Envelope constants are calibrated on the cached spectral grid used
        for `cdf`, so repeated sampling calls with the same parameters are fast
        and stable across the entire parameter range.

        Parameters
        ----------
        xi : float
            Direction parameter, $0 \leq \xi \leq 2\pi$.
        kappa : float
            Concentration parameter, $\kappa \geq 0$.
        nu : float
            Shape parameter, $-1 \leq \nu \leq 1$.
        lmbd : float
            Skewness parameter, $-1 \leq \lambda \leq 1$.
        size : int or tuple of ints, optional
            Desired output shape.
        random_state : {None, int, np.random.Generator}, optional
            Random number generator specification.

        Returns
        -------
        rvs : array_like
            Random variates on $[0, 2\pi)$ sampled from the inverse Batschelet
            distribution.
        """

        xi_val = _invbat_ensure_scalar(xi, "xi")
        kappa_val = _invbat_ensure_scalar(kappa, "kappa")
        nu_val = _invbat_ensure_scalar(nu, "nu")
        lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd")
        return super().rvs(xi_val, kappa_val, nu_val, lmbd_val, size=size, random_state=random_state)

    def fit(
        self,
        data,
        *,
        weights=None,
        method="mle",
        optimizer="L-BFGS-B",
        options=None,
        nu_grid=None,
        lmbd_grid=None,
        kappa_bounds=(1e-6, _INVBAT_KAPPA_UPPER),
        nu_bounds=(-0.99, 0.99),
        lmbd_bounds=(-0.99, 0.99),
        return_info=False,
        **minimize_kwargs,
    ):
        r"""
        Estimate $(\xi, \kappa, \nu, \lambda)$ from circular data.

        ``method='mle'`` maximises the weighted log-likelihood using the cached
        spectral tables for the pdf and normalising constant. ``method='moments'``
        returns the circular mean, ``circ_kappa`` estimate, and sets $(\nu, \lambda)
        = (0, 0)$.

        Parameters
        ----------
        data : array_like
            Sample of angles.
        weights : array_like, optional
            Non-negative weights broadcastable to ``data``.
        method : {'mle', 'moments'}, default 'mle'
            Estimation method.
        optimizer : str, optional
            SciPy optimiser for maximum likelihood.
        options : dict, optional
            Optimiser options forwarded to :func:`scipy.optimize.minimize`.
        nu_grid : array_like, optional
            Candidate $
            u$ values for profiling the starting point.
        lmbd_grid : array_like, optional
            Candidate $
            u$ values for $
            lambda$ profiling.
        kappa_bounds, nu_bounds, lmbd_bounds : tuple, optional
            Parameter bounds enforced during optimisation.
        return_info : bool, optional
            If True, also return a dictionary with optimisation diagnostics.
        **minimize_kwargs :
            Additional keyword arguments forwarded to
            :func:`scipy.optimize.minimize`.

        Returns
        -------
        params : tuple
            Estimated parameters ``(xi, kappa, nu, lmbd)``.
        info : dict, optional
            Returned when ``return_info=True`` with optimisation diagnostics.
        """

        minimize_kwargs = self._sanitize_fit_kwargs(minimize_kwargs)
        minimize_kwargs.pop("floc", None)
        minimize_kwargs.pop("fscale", None)

        data_arr = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
        if data_arr.size == 0:
            raise ValueError("`data` must contain at least one observation.")

        if weights is None:
            w = np.ones_like(data_arr, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            if np.any(w < 0):
                raise ValueError("`weights` must be non-negative.")
            w = np.broadcast_to(w, data_arr.shape).astype(float, copy=False).ravel()

        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0.0:
            raise ValueError("Sum of weights must be positive.")
        n_eff = float(w_sum**2 / np.sum(w**2))

        xi_mom, r1 = circ_mean_and_r(alpha=data_arr, w=w)
        if not np.isfinite(xi_mom):
            xi_mom = 0.0
        xi_mom = float(np.mod(xi_mom, 2.0 * np.pi))
        r1 = float(np.clip(r1, 1e-12, 1.0 - 1e-12))
        n_adjust = int(max(1, round(w_sum)))
        kappa_mom = float(np.clip(circ_kappa(r=r1, n=n_adjust), kappa_bounds[0], kappa_bounds[1]))

        if method == "moments":
            estimates = (xi_mom, kappa_mom, 0.0, 0.0)
            if return_info:
                info = {
                    "method": "moments",
                    "converged": True,
                    "loglik": float(-np.sum(w) * np.log(2.0 * np.pi)) if kappa_mom <= _INVBAT_KAPPA_TOL else float("nan"),
                    "n_effective": n_eff,
                }
                return estimates, info
            return estimates

        method_key = str(method).lower()
        if method_key != "mle":
            raise ValueError("`method` must be one of {'mle', 'moments' }.")

        two_pi = 2.0 * np.pi

        if nu_grid is None:
            nu_grid = np.linspace(nu_bounds[0], nu_bounds[1], 5)
        else:
            nu_grid = np.asarray(nu_grid, dtype=float)

        if lmbd_grid is None:
            lmbd_grid = np.linspace(lmbd_bounds[0], lmbd_bounds[1], 5)
        else:
            lmbd_grid = np.asarray(lmbd_grid, dtype=float)

        def nll(params):
            xi_param, kappa_param, nu_param, lmbd_param = params
            if not (0.0 <= xi_param <= two_pi):
                return np.inf
            if not (kappa_bounds[0] <= kappa_param <= kappa_bounds[1]):
                return np.inf
            if not (nu_bounds[0] <= nu_param <= nu_bounds[1]):
                return np.inf
            if not (lmbd_bounds[0] <= lmbd_param <= lmbd_bounds[1]):
                return np.inf

            xi_wrapped = float(np.mod(xi_param, two_pi))
            if kappa_param <= _INVBAT_KAPPA_TOL:
                log_pdf = -np.log(two_pi)
                return float(-np.sum(w * log_pdf))

            table = self._get_invbat_table(float(kappa_param), float(nu_param), float(lmbd_param))
            phi = ((data_arr - xi_wrapped + np.pi) % two_pi) - np.pi
            pdf_vals = table["pdf_interp"](phi)
            if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)):
                return np.inf
            return float(-np.sum(w * np.log(pdf_vals)))

        best_nu = 0.0
        best_lmbd = 0.0
        best_score = nll((xi_mom, kappa_mom, best_nu, best_lmbd))
        for nu_candidate in np.unique(np.concatenate(([0.0], nu_grid))):
            for lmbd_candidate in np.unique(np.concatenate(([0.0], lmbd_grid))):
                score = nll((xi_mom, kappa_mom, float(nu_candidate), float(lmbd_candidate)))
                if score < best_score:
                    best_score = score
                    best_nu = float(nu_candidate)
                    best_lmbd = float(lmbd_candidate)

        init = np.array([xi_mom, kappa_mom, best_nu, best_lmbd], dtype=float)
        bounds = [
            (0.0, two_pi),
            (kappa_bounds[0], kappa_bounds[1]),
            (nu_bounds[0], nu_bounds[1]),
            (lmbd_bounds[0], lmbd_bounds[1]),
        ]

        options = {} if options is None else dict(options)

        result = minimize(
            nll,
            init,
            method=optimizer,
            bounds=bounds,
            options=options,
            **minimize_kwargs,
        )

        optimizer_used = optimizer
        if not result.success and optimizer != "Powell":
            fallback = minimize(
                nll,
                init,
                method="Powell",
                bounds=bounds,
                options={},
                **minimize_kwargs,
            )
            if fallback.success:
                result = fallback
                optimizer_used = "Powell"

        if not result.success:
            raise RuntimeError(f"Maximum likelihood fit failed: {result.message}")

        xi_hat = self._wrap_direction(float(result.x[0]))
        kappa_hat = float(np.clip(result.x[1], kappa_bounds[0], kappa_bounds[1]))
        nu_hat = float(np.clip(result.x[2], nu_bounds[0], nu_bounds[1]))
        lmbd_hat = float(np.clip(result.x[3], lmbd_bounds[0], lmbd_bounds[1]))

        estimates = (xi_hat, kappa_hat, nu_hat, lmbd_hat)
        if not return_info:
            return estimates

        info = {
            "method": "mle",
            "loglik": float(-result.fun),
            "n_effective": n_eff,
            "converged": bool(result.success),
            "optimizer": optimizer_used,
            "nit": getattr(result, "nit", np.nan),
            "nfev": getattr(result, "nfev", np.nan),
            "message": result.message,
        }
        return estimates, info

    def _get_invbat_table(self, kappa, nu, lmbd, grid_size=None):
        kappa_val = float(np.clip(kappa, 0.0, _INVBAT_KAPPA_UPPER))
        nu_val = float(nu)
        lmbd_val = float(lmbd)
        if kappa_val <= _INVBAT_KAPPA_TOL:
            phi = np.array([-np.pi, np.pi], dtype=float)
            pdf_vals = np.full(2, 1.0 / (2.0 * np.pi), dtype=float)
            cdf_interp = PchipInterpolator(phi, [0.0, 1.0], extrapolate=True)
            pdf_interp = PchipInterpolator(phi, pdf_vals, extrapolate=True)
            return {
                "phi": phi,
                "pdf": pdf_vals,
                "cdf": np.array([0.0, 1.0], dtype=float),
                "cdf_interp": cdf_interp,
                "pdf_interp": pdf_interp,
                "inv_cdf_interp": PchipInterpolator([0.0, 1.0], phi, extrapolate=True),
                "log_normalizer": -np.log(2.0 * np.pi),
            }

        if grid_size is None:
            grid_size = _invbat_grid_size(kappa_val, nu_val, lmbd_val)
        grid_int = int(grid_size)
        key = (kappa_val, nu_val, lmbd_val, grid_int)
        table = self._invbat_table_cache.get(key)
        if table is None:
            table = self._build_invbat_table(kappa_val, nu_val, lmbd_val, grid_int)
            self._invbat_table_cache[key] = table
        return table

    def _build_invbat_table(self, kappa, nu, lmbd, grid_size):
        phi = np.linspace(-np.pi, np.pi, grid_size + 1, dtype=float)
        phi_star = _tnu(phi, nu, 0.0)
        skew = _slmbdinv(phi_star, lmbd)

        if np.isclose(lmbd, -1.0, atol=_INVBAT_LMBDA_TOL):
            log_kernel = kappa * np.cos(phi_star - np.sin(phi_star))
        else:
            con1 = (1.0 - lmbd) / (1.0 + lmbd)
            con2 = (2.0 * lmbd) / (1.0 + lmbd)
            log_kernel = kappa * np.cos(con1 * phi_star + con2 * skew)

        normalizer = self._get_cached_normalizer(
            lambda: _c_invbatschelet(kappa, lmbd),
            kappa,
            lmbd,
        )
        if not np.isfinite(normalizer) or normalizer <= 0.0:
            normalizer = _c_invbatschelet_numeric(kappa, lmbd, grid_size=_INVBAT_NUMERIC_GRID)
            cache = self._get_normalization_cache()
            cache[(kappa, lmbd)] = normalizer

        log_norm = np.log(normalizer)
        log_pdf = log_norm + log_kernel
        log_pdf = np.clip(log_pdf, -745.0, 700.0)
        pdf = np.exp(log_pdf)

        step = (2.0 * np.pi) / grid_size
        avg = 0.5 * (pdf[:-1] + pdf[1:])
        mass = float(np.sum(avg) * step)
        if not np.isfinite(mass) or mass <= 0.0:
            pdf = np.full_like(pdf, 1.0 / (2.0 * np.pi), dtype=float)
            log_norm = -np.log(2.0 * np.pi)
            mass = 1.0
        elif abs(mass - 1.0) > 5e-10:
            scale = 1.0 / mass
            pdf *= scale
            log_norm += np.log(scale)
            mass = 1.0
            cache = self._get_normalization_cache()
            cache[(kappa, lmbd)] = np.exp(log_norm)

        avg = 0.5 * (pdf[:-1] + pdf[1:])
        cumulative = np.concatenate(([0.0], np.cumsum(avg))) * step
        cumulative = np.maximum.accumulate(np.clip(cumulative, 0.0, 1.0))
        cumulative[-1] = 1.0

        cdf_interp = PchipInterpolator(phi, cumulative, extrapolate=True)

        unique_vals, unique_idx = np.unique(cumulative, return_index=True)
        inv_cdf_interp = (
            PchipInterpolator(unique_vals, phi[unique_idx], extrapolate=True)
            if unique_vals.size >= 2
            else None
        )

        pdf_interp = PchipInterpolator(phi, pdf, extrapolate=True)

        return {
            "phi": phi,
            "pdf": pdf,
            "cdf": cumulative,
            "cdf_interp": cdf_interp,
            "pdf_interp": pdf_interp,
            "inv_cdf_interp": inv_cdf_interp,
            "log_normalizer": log_norm,
        }

pdf(x, xi, kappa, nu, lmbd, *args, **kwargs)

Probability density function (PDF) of the inverse Batschelet distribution.

Let

  • \(\varphi = ((\theta - \xi + \pi) \bmod 2\pi) - \pi\),
  • \(t_\nu^{-1}(\varphi)\) solve \(y - \nu (1 + \cos y) = \varphi\),
  • \(s_\lambda^{-1}(\cdot)\) solve \(u - \tfrac{1 + \lambda}{2} \sin u = \cdot\),

and set \(\phi^\star = t_\nu^{-1}(\varphi)\), \(u^\star = s_\lambda^{-1}(\phi^\star)\), \(a = \tfrac{1 - \lambda}{1 + \lambda}\), \(b = \tfrac{2 \lambda}{1 + \lambda}\). The inverse Batschelet density is

\[ f(\theta) = c(\kappa, \lambda) \exp\bigl[\kappa \cos\bigl(a\,\phi^\star + b\,u^\star\bigr)\bigr], \]

where \(c(\kappa,\lambda)\) is the normalising constant (independent of \(\xi\) and \(\nu\)). For \(\kappa \rightarrow 0\) the distribution reduces to the circular uniform density \(1/(2\pi)\).

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the PDF, defined on the interval \([0, 2\pi)\).

required
xi float

Direction parameter, \(0 \leq \xi \leq 2\pi\).

required
kappa float

Concentration parameter, \(\kappa \geq 0\). Higher values result in sharper peaks around \(\xi\).

required
nu float

Shape parameter, \(-1 \leq \nu \leq 1\). Controls asymmetry through angular transformation.

required
lmbd float

Skewness parameter, \(-1 \leq \lambda \leq 1\). Controls the degree of skewness in the distribution.

required

Returns:

Name Type Description
pdf_values array_like

Values of the probability density function at the specified points.

Source code in pycircstat2/distributions.py
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
def pdf(self, x, xi, kappa, nu, lmbd, *args, **kwargs):
    r"""
    Probability density function (PDF) of the inverse Batschelet distribution.

    Let

    - $\varphi = ((\theta - \xi + \pi) \bmod 2\pi) - \pi$,
    - $t_\nu^{-1}(\varphi)$ solve $y - \nu (1 + \cos y) = \varphi$,
    - $s_\lambda^{-1}(\cdot)$ solve $u - \tfrac{1 + \lambda}{2} \sin u = \cdot$,

    and set
    $\phi^\star = t_\nu^{-1}(\varphi)$,
    $u^\star = s_\lambda^{-1}(\phi^\star)$,
    $a = \tfrac{1 - \lambda}{1 + \lambda}$,
    $b = \tfrac{2 \lambda}{1 + \lambda}$.
    The inverse Batschelet density is

    $$
    f(\theta) = c(\kappa, \lambda)
    \exp\bigl[\kappa \cos\bigl(a\,\phi^\star + b\,u^\star\bigr)\bigr],
    $$

    where $c(\kappa,\lambda)$ is the normalising constant (independent of
    $\xi$ and $\nu$). For $\kappa \rightarrow 0$ the distribution reduces to
    the circular uniform density $1/(2\pi)$.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
    xi : float
        Direction parameter, $0 \leq \xi \leq 2\pi$.
    kappa : float
        Concentration parameter, $\kappa \geq 0$. Higher values result in sharper peaks around $\xi$.
    nu : float
        Shape parameter, $-1 \leq \nu \leq 1$. Controls asymmetry through angular transformation.
    lmbd : float
        Skewness parameter, $-1 \leq \lambda \leq 1$. Controls the degree of skewness in the distribution.

    Returns
    -------
    pdf_values : array_like
        Values of the probability density function at the specified points.
    """
    return super().pdf(x, xi, kappa, nu, lmbd, *args, **kwargs)

cdf(x, xi, kappa, nu, lmbd, *args, **kwargs)

Cumulative distribution function of the inverse Batschelet distribution.

The implementation precomputes the normalised primitive on a periodic grid in the centred angle \(\varphi = (\theta - \xi) \bmod 2\pi - \pi\). For each grid node, the inverse peakedness transform \(t_\nu^{-1}\) and inverse Batschelet skew \(s_\lambda^{-1}\) are evaluated, and the resulting kernel is accumulated via a trapezoidal rule. The cumulative table is cached per parameter triple \((\kappa, \nu, \lambda)\), enabling \(O(1)\) queries after the initial \(O(N)\) precomputation. The limit \(\kappa \to 0\) reduces to the circular uniform CDF \(\theta / (2\pi)\).

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
xi float

Direction parameter, \(0 \leq \xi \leq 2\pi\).

required
kappa float

Concentration parameter, \(\kappa \geq 0\).

required
nu float

Shape parameter, \(-1 \leq \nu \leq 1\).

required
lmbd float

Skewness parameter, \(-1 \leq \lambda \leq 1\).

required

Returns:

Name Type Description
cdf_values array_like

Cumulative probabilities corresponding to x.

Source code in pycircstat2/distributions.py
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
def cdf(self, x, xi, kappa, nu, lmbd, *args, **kwargs):
    r"""
    Cumulative distribution function of the inverse Batschelet distribution.

    The implementation precomputes the normalised primitive on a periodic grid
    in the centred angle $\varphi = (\theta - \xi) \bmod 2\pi - \pi$. For each
    grid node, the inverse peakedness transform $t_\nu^{-1}$ and inverse
    Batschelet skew $s_\lambda^{-1}$ are evaluated, and the resulting kernel is
    accumulated via a trapezoidal rule. The cumulative table is cached per
    parameter triple $(\kappa, \nu, \lambda)$, enabling $O(1)$ queries after the
    initial $O(N)$ precomputation. The limit $\kappa \to 0$ reduces to the
    circular uniform CDF $\theta / (2\pi)$.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    xi : float
        Direction parameter, $0 \leq \xi \leq 2\pi$.
    kappa : float
        Concentration parameter, $\kappa \geq 0$.
    nu : float
        Shape parameter, $-1 \leq \nu \leq 1$.
    lmbd : float
        Skewness parameter, $-1 \leq \lambda \leq 1$.

    Returns
    -------
    cdf_values : array_like
        Cumulative probabilities corresponding to `x`.
    """
    xi_val = _invbat_ensure_scalar(xi, "xi")
    kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER))
    nu_val = _invbat_ensure_scalar(nu, "nu")
    lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd")
    return super().cdf(x, xi_val, kappa_val, nu_val, lmbd_val, *args, **kwargs)

ppf(q, xi, kappa, nu, lmbd, *args, **kwargs)

Percent-point function (quantile) of the inverse Batschelet distribution.

Quantiles are obtained by inverting the cached cumulative table described in cdf. A monotone initial guess supplied by the table inverse is refined with safeguarded Newton steps that leverage the tabulated density, while preserving a bracketing interval. For \(\kappa \rightarrow 0\), the quantile reduces to the linear uniform mapping \(2\pi q\).

Parameters:

Name Type Description Default
q array_like

Quantiles to evaluate (0 <= q <= 1).

required
xi float

Direction parameter, \(0 \leq \xi \leq 2\pi\).

required
kappa float

Concentration parameter, \(\kappa \geq 0\).

required
nu float

Shape parameter, \(-1 \leq \nu \leq 1\).

required
lmbd float

Skewness parameter, \(-1 \leq \lambda \leq 1\).

required

Returns:

Name Type Description
ppf_values array_like

Angles corresponding to the probabilities in q.

Source code in pycircstat2/distributions.py
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
def ppf(self, q, xi, kappa, nu, lmbd, *args, **kwargs):
    r"""
    Percent-point function (quantile) of the inverse Batschelet distribution.

    Quantiles are obtained by inverting the cached cumulative table described in
    `cdf`. A monotone initial guess supplied by the table inverse is refined
    with safeguarded Newton steps that leverage the tabulated density, while
    preserving a bracketing interval. For $\kappa \rightarrow 0$, the quantile
    reduces to the linear uniform mapping $2\pi q$.

    Parameters
    ----------
    q : array_like
        Quantiles to evaluate (0 <= q <= 1).
    xi : float
        Direction parameter, $0 \leq \xi \leq 2\pi$.
    kappa : float
        Concentration parameter, $\kappa \geq 0$.
    nu : float
        Shape parameter, $-1 \leq \nu \leq 1$.
    lmbd : float
        Skewness parameter, $-1 \leq \lambda \leq 1$.

    Returns
    -------
    ppf_values : array_like
        Angles corresponding to the probabilities in `q`.
    """
    xi_val = _invbat_ensure_scalar(xi, "xi")
    kappa_val = float(np.clip(_invbat_ensure_scalar(kappa, "kappa"), 0.0, _INVBAT_KAPPA_UPPER))
    nu_val = _invbat_ensure_scalar(nu, "nu")
    lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd")
    return super().ppf(q, xi_val, kappa_val, nu_val, lmbd_val, *args, **kwargs)

rvs(xi=None, kappa=None, nu=None, lmbd=None, size=None, random_state=None)

Draw random variates from the inverse Batschelet distribution.

Sampling proceeds by acceptance--rejection with a von Mises envelope whose concentration is matched to the curvature of the inverse Batschelet kernel at the mode. Envelope constants are calibrated on the cached spectral grid used for cdf, so repeated sampling calls with the same parameters are fast and stable across the entire parameter range.

Parameters:

Name Type Description Default
xi float

Direction parameter, \(0 \leq \xi \leq 2\pi\).

None
kappa float

Concentration parameter, \(\kappa \geq 0\).

None
nu float

Shape parameter, \(-1 \leq \nu \leq 1\).

None
lmbd float

Skewness parameter, \(-1 \leq \lambda \leq 1\).

None
size int or tuple of ints

Desired output shape.

None
random_state (None, int, Generator)

Random number generator specification.

None

Returns:

Name Type Description
rvs array_like

Random variates on \([0, 2\pi)\) sampled from the inverse Batschelet distribution.

Source code in pycircstat2/distributions.py
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
def rvs(self, xi=None, kappa=None, nu=None, lmbd=None, size=None, random_state=None):
    r"""
    Draw random variates from the inverse Batschelet distribution.

    Sampling proceeds by acceptance--rejection with a von Mises envelope whose
    concentration is matched to the curvature of the inverse Batschelet kernel at
    the mode. Envelope constants are calibrated on the cached spectral grid used
    for `cdf`, so repeated sampling calls with the same parameters are fast
    and stable across the entire parameter range.

    Parameters
    ----------
    xi : float
        Direction parameter, $0 \leq \xi \leq 2\pi$.
    kappa : float
        Concentration parameter, $\kappa \geq 0$.
    nu : float
        Shape parameter, $-1 \leq \nu \leq 1$.
    lmbd : float
        Skewness parameter, $-1 \leq \lambda \leq 1$.
    size : int or tuple of ints, optional
        Desired output shape.
    random_state : {None, int, np.random.Generator}, optional
        Random number generator specification.

    Returns
    -------
    rvs : array_like
        Random variates on $[0, 2\pi)$ sampled from the inverse Batschelet
        distribution.
    """

    xi_val = _invbat_ensure_scalar(xi, "xi")
    kappa_val = _invbat_ensure_scalar(kappa, "kappa")
    nu_val = _invbat_ensure_scalar(nu, "nu")
    lmbd_val = _invbat_ensure_scalar(lmbd, "lmbd")
    return super().rvs(xi_val, kappa_val, nu_val, lmbd_val, size=size, random_state=random_state)

fit(data, *, weights=None, method='mle', optimizer='L-BFGS-B', options=None, nu_grid=None, lmbd_grid=None, kappa_bounds=(1e-06, _INVBAT_KAPPA_UPPER), nu_bounds=(-0.99, 0.99), lmbd_bounds=(-0.99, 0.99), return_info=False, **minimize_kwargs)

Estimate \((\xi, \kappa, \nu, \lambda)\) from circular data.

method='mle' maximises the weighted log-likelihood using the cached spectral tables for the pdf and normalising constant. method='moments' returns the circular mean, circ_kappa estimate, and sets \((\nu, \lambda) = (0, 0)\).

Parameters:

Name Type Description Default
data array_like

Sample of angles.

required
weights array_like

Non-negative weights broadcastable to data.

None
method (mle, moments)

Estimation method.

'mle'
optimizer str

SciPy optimiser for maximum likelihood.

'L-BFGS-B'
options dict

Optimiser options forwarded to :func:scipy.optimize.minimize.

None
nu_grid array_like

Candidate $ u$ values for profiling the starting point.

None
lmbd_grid array_like

Candidate $ u$ values for $ lambda$ profiling.

None
kappa_bounds tuple

Parameter bounds enforced during optimisation.

(1e-06, _INVBAT_KAPPA_UPPER)
nu_bounds tuple

Parameter bounds enforced during optimisation.

(1e-06, _INVBAT_KAPPA_UPPER)
lmbd_bounds tuple

Parameter bounds enforced during optimisation.

(1e-06, _INVBAT_KAPPA_UPPER)
return_info bool

If True, also return a dictionary with optimisation diagnostics.

False
**minimize_kwargs

Additional keyword arguments forwarded to :func:scipy.optimize.minimize.

{}

Returns:

Name Type Description
params tuple

Estimated parameters (xi, kappa, nu, lmbd).

info (dict, optional)

Returned when return_info=True with optimisation diagnostics.

Source code in pycircstat2/distributions.py
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
def fit(
    self,
    data,
    *,
    weights=None,
    method="mle",
    optimizer="L-BFGS-B",
    options=None,
    nu_grid=None,
    lmbd_grid=None,
    kappa_bounds=(1e-6, _INVBAT_KAPPA_UPPER),
    nu_bounds=(-0.99, 0.99),
    lmbd_bounds=(-0.99, 0.99),
    return_info=False,
    **minimize_kwargs,
):
    r"""
    Estimate $(\xi, \kappa, \nu, \lambda)$ from circular data.

    ``method='mle'`` maximises the weighted log-likelihood using the cached
    spectral tables for the pdf and normalising constant. ``method='moments'``
    returns the circular mean, ``circ_kappa`` estimate, and sets $(\nu, \lambda)
    = (0, 0)$.

    Parameters
    ----------
    data : array_like
        Sample of angles.
    weights : array_like, optional
        Non-negative weights broadcastable to ``data``.
    method : {'mle', 'moments'}, default 'mle'
        Estimation method.
    optimizer : str, optional
        SciPy optimiser for maximum likelihood.
    options : dict, optional
        Optimiser options forwarded to :func:`scipy.optimize.minimize`.
    nu_grid : array_like, optional
        Candidate $
        u$ values for profiling the starting point.
    lmbd_grid : array_like, optional
        Candidate $
        u$ values for $
        lambda$ profiling.
    kappa_bounds, nu_bounds, lmbd_bounds : tuple, optional
        Parameter bounds enforced during optimisation.
    return_info : bool, optional
        If True, also return a dictionary with optimisation diagnostics.
    **minimize_kwargs :
        Additional keyword arguments forwarded to
        :func:`scipy.optimize.minimize`.

    Returns
    -------
    params : tuple
        Estimated parameters ``(xi, kappa, nu, lmbd)``.
    info : dict, optional
        Returned when ``return_info=True`` with optimisation diagnostics.
    """

    minimize_kwargs = self._sanitize_fit_kwargs(minimize_kwargs)
    minimize_kwargs.pop("floc", None)
    minimize_kwargs.pop("fscale", None)

    data_arr = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
    if data_arr.size == 0:
        raise ValueError("`data` must contain at least one observation.")

    if weights is None:
        w = np.ones_like(data_arr, dtype=float)
    else:
        w = np.asarray(weights, dtype=float)
        if np.any(w < 0):
            raise ValueError("`weights` must be non-negative.")
        w = np.broadcast_to(w, data_arr.shape).astype(float, copy=False).ravel()

    w_sum = float(np.sum(w))
    if not np.isfinite(w_sum) or w_sum <= 0.0:
        raise ValueError("Sum of weights must be positive.")
    n_eff = float(w_sum**2 / np.sum(w**2))

    xi_mom, r1 = circ_mean_and_r(alpha=data_arr, w=w)
    if not np.isfinite(xi_mom):
        xi_mom = 0.0
    xi_mom = float(np.mod(xi_mom, 2.0 * np.pi))
    r1 = float(np.clip(r1, 1e-12, 1.0 - 1e-12))
    n_adjust = int(max(1, round(w_sum)))
    kappa_mom = float(np.clip(circ_kappa(r=r1, n=n_adjust), kappa_bounds[0], kappa_bounds[1]))

    if method == "moments":
        estimates = (xi_mom, kappa_mom, 0.0, 0.0)
        if return_info:
            info = {
                "method": "moments",
                "converged": True,
                "loglik": float(-np.sum(w) * np.log(2.0 * np.pi)) if kappa_mom <= _INVBAT_KAPPA_TOL else float("nan"),
                "n_effective": n_eff,
            }
            return estimates, info
        return estimates

    method_key = str(method).lower()
    if method_key != "mle":
        raise ValueError("`method` must be one of {'mle', 'moments' }.")

    two_pi = 2.0 * np.pi

    if nu_grid is None:
        nu_grid = np.linspace(nu_bounds[0], nu_bounds[1], 5)
    else:
        nu_grid = np.asarray(nu_grid, dtype=float)

    if lmbd_grid is None:
        lmbd_grid = np.linspace(lmbd_bounds[0], lmbd_bounds[1], 5)
    else:
        lmbd_grid = np.asarray(lmbd_grid, dtype=float)

    def nll(params):
        xi_param, kappa_param, nu_param, lmbd_param = params
        if not (0.0 <= xi_param <= two_pi):
            return np.inf
        if not (kappa_bounds[0] <= kappa_param <= kappa_bounds[1]):
            return np.inf
        if not (nu_bounds[0] <= nu_param <= nu_bounds[1]):
            return np.inf
        if not (lmbd_bounds[0] <= lmbd_param <= lmbd_bounds[1]):
            return np.inf

        xi_wrapped = float(np.mod(xi_param, two_pi))
        if kappa_param <= _INVBAT_KAPPA_TOL:
            log_pdf = -np.log(two_pi)
            return float(-np.sum(w * log_pdf))

        table = self._get_invbat_table(float(kappa_param), float(nu_param), float(lmbd_param))
        phi = ((data_arr - xi_wrapped + np.pi) % two_pi) - np.pi
        pdf_vals = table["pdf_interp"](phi)
        if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)):
            return np.inf
        return float(-np.sum(w * np.log(pdf_vals)))

    best_nu = 0.0
    best_lmbd = 0.0
    best_score = nll((xi_mom, kappa_mom, best_nu, best_lmbd))
    for nu_candidate in np.unique(np.concatenate(([0.0], nu_grid))):
        for lmbd_candidate in np.unique(np.concatenate(([0.0], lmbd_grid))):
            score = nll((xi_mom, kappa_mom, float(nu_candidate), float(lmbd_candidate)))
            if score < best_score:
                best_score = score
                best_nu = float(nu_candidate)
                best_lmbd = float(lmbd_candidate)

    init = np.array([xi_mom, kappa_mom, best_nu, best_lmbd], dtype=float)
    bounds = [
        (0.0, two_pi),
        (kappa_bounds[0], kappa_bounds[1]),
        (nu_bounds[0], nu_bounds[1]),
        (lmbd_bounds[0], lmbd_bounds[1]),
    ]

    options = {} if options is None else dict(options)

    result = minimize(
        nll,
        init,
        method=optimizer,
        bounds=bounds,
        options=options,
        **minimize_kwargs,
    )

    optimizer_used = optimizer
    if not result.success and optimizer != "Powell":
        fallback = minimize(
            nll,
            init,
            method="Powell",
            bounds=bounds,
            options={},
            **minimize_kwargs,
        )
        if fallback.success:
            result = fallback
            optimizer_used = "Powell"

    if not result.success:
        raise RuntimeError(f"Maximum likelihood fit failed: {result.message}")

    xi_hat = self._wrap_direction(float(result.x[0]))
    kappa_hat = float(np.clip(result.x[1], kappa_bounds[0], kappa_bounds[1]))
    nu_hat = float(np.clip(result.x[2], nu_bounds[0], nu_bounds[1]))
    lmbd_hat = float(np.clip(result.x[3], lmbd_bounds[0], lmbd_bounds[1]))

    estimates = (xi_hat, kappa_hat, nu_hat, lmbd_hat)
    if not return_info:
        return estimates

    info = {
        "method": "mle",
        "loglik": float(-result.fun),
        "n_effective": n_eff,
        "converged": bool(result.success),
        "optimizer": optimizer_used,
        "nit": getattr(result, "nit", np.nan),
        "nfev": getattr(result, "nfev", np.nan),
        "message": result.message,
    }
    return estimates, info

wrapstable_gen

Bases: CircularContinuous

Wrapped Stable Distribution

wrapstable

The wrapped stable family results from wrapping a linear stable law onto [0, 2π). Its trigonometric moments satisfy

\[ \mathbb{E}\big[e^{ip\Theta}\big] = \rho_p e^{i\mu_p}, \qquad \rho_p = \exp\left[-(\gamma p)^\alpha\right], \]

with

\[ \mu_p = \begin{cases} \delta p + \beta \tan\left(\tfrac{\pi\alpha}{2}\right)\bigl((\gamma p)^\alpha - \gamma p\bigr), & \alpha \ne 1, \\[6pt] \delta p + \tfrac{2}{\pi}\beta\gamma p \log(\gamma p), & \alpha = 1. \end{cases} \]

Special cases include the wrapped normal (α=2, β=0), wrapped Cauchy (α=1, β=0), and wrapped Lévy (α=1/2, β=1).

Methods:

Name Description
pdf

Probability density function via adaptive Fourier series.

cdf

Analytic cumulative distribution function using integrated series.

ppf

Quantile function obtained by safeguarded Newton refinement.

rvs

Random variates by Chambers–Mallows–Stuck sampling and wrapping.

fit

Estimate parameters via moment starts with optional MLE refinement.

References
  • Pewsey (2008). Computational Statistics & Data Analysis 52(3), 1516-1523.

Parameters must be scalar; Fourier series coefficients are cached per parameter set.

Source code in pycircstat2/distributions.py
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
class wrapstable_gen(CircularContinuous):
    r"""Wrapped Stable Distribution

    ![wrapstable](../images/circ-mod-wrapstable.png)

    The wrapped stable family results from wrapping a linear stable law onto
    ``[0, 2π)``. Its trigonometric moments satisfy

    $$
    \mathbb{E}\big[e^{ip\Theta}\big] = \rho_p e^{i\mu_p}, \qquad
    \rho_p = \exp\left[-(\gamma p)^\alpha\right],
    $$

    with

    $$
    \mu_p =
    \begin{cases}
        \delta p + \beta \tan\left(\tfrac{\pi\alpha}{2}\right)\bigl((\gamma p)^\alpha - \gamma p\bigr), & \alpha \ne 1, \\[6pt]
        \delta p + \tfrac{2}{\pi}\beta\gamma p \log(\gamma p), & \alpha = 1.
    \end{cases}
    $$

    Special cases include the wrapped normal (``α=2, β=0``), wrapped Cauchy
    (``α=1, β=0``), and wrapped Lévy (``α=1/2, β=1``).

    Methods
    -------
    pdf(x, delta, alpha, beta, gamma)
        Probability density function via adaptive Fourier series.

    cdf(x, delta, alpha, beta, gamma)
        Analytic cumulative distribution function using integrated series.

    ppf(q, delta, alpha, beta, gamma)
        Quantile function obtained by safeguarded Newton refinement.

    rvs(delta, alpha, beta, gamma, size=None, random_state=None)
        Random variates by Chambers–Mallows–Stuck sampling and wrapping.

    fit(data, *, method='mle' | 'moments', ...)
        Estimate parameters via moment starts with optional MLE refinement.

    References
    ----------
    - Pewsey (2008). *Computational Statistics & Data Analysis* 52(3), 1516-1523.

    Parameters must be scalar; Fourier series coefficients are cached per
    parameter set.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._series_cache = {}

    def _clear_normalization_cache(self):
        super()._clear_normalization_cache()
        self._series_cache = {}

    def _validate_params(self, delta, alpha, beta, gamma):
        delta_arr, alpha_arr, beta_arr, gamma_arr = np.broadcast_arrays(delta, alpha, beta, gamma)
        return (
            (delta_arr >= 0.0)
            & (delta_arr <= 2.0 * np.pi)
            & (alpha_arr > 0.0)
            & (alpha_arr <= 2.0)
            & (beta_arr > -1.0)
            & (beta_arr < 1.0)
            & (gamma_arr > 0.0)
        )

    def _argcheck(self, delta, alpha, beta, gamma):
        try:
            return self._validate_params(delta, alpha, beta, gamma)
        except ValueError:
            return False

    def _pdf(self, x, delta, alpha, beta, gamma):
        x_arr = np.asarray(x, dtype=float)
        rho_vals, mu_vals, p = self._get_series_terms(delta, alpha, beta, gamma)
        cos_args = p[:, np.newaxis] * x_arr[np.newaxis, ...] - mu_vals[:, np.newaxis]
        series_sum = np.sum(rho_vals[:, np.newaxis] * np.cos(cos_args), axis=0)
        pdf_values = 1 / (2 * np.pi) * (1 + 2 * series_sum)
        if np.isscalar(x):
            return np.asarray(pdf_values, dtype=float).reshape(-1)[0]
        return pdf_values

    def pdf(self, x, delta, alpha, beta, gamma, *args, **kwargs):
        r"""
        Probability density function of the Wrapped Stable distribution.

        $$
        f(\theta) = \frac{1}{2\pi} \left[1 + 2 \sum_{p=1}^{\infty} \rho_p \cos\left(p(\theta - \mu_p)\right)\right]
        $$

        , where $\rho_p$ is the $p$th mean resultant length and $\mu_p$ is the $p$th mean direction:

        $$
        \rho_p = \exp\left(-(\gamma p)^\alpha\right)
        $$

        $$
        \mu_p = 
        \begin{cases}
            \delta p + \beta \tan\left(\frac{\pi \alpha}{2}\right) \left((\gamma p)^\alpha - \gamma p\right), & \alpha \neq 1 \\
            \delta p - \beta \frac{2}{\pi} \log(\gamma p), & \text{if } \alpha = 1
        \end{cases}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
        delta : float
            Location parameter, $0 \leq \delta \leq 2\pi$. This is the mean direction of the distribution.
        alpha : float
            Stability parameter, $0 < \alpha \leq 2$. Higher values indicate heavier tails.
        beta : float
            Skewness parameter, $-1 < \beta < 1$. Controls the asymmetry of the distribution.
        gamma : float
            Scale parameter, $\gamma > 0$. Scales the distribution.

        Returns
        -------
        pdf_values : array_like
            Values of the probability density function at the specified points.
        """
        return super().pdf(x, delta, alpha, beta, gamma, *args, **kwargs)

    def _cdf(self, x, delta, alpha, beta, gamma):
        x_arr = np.asarray(x, dtype=float)
        scalar_input = x_arr.ndim == 0
        theta = np.atleast_1d(x_arr)

        rho_vals, mu_vals, p = self._get_series_terms(delta, alpha, beta, gamma)
        theta_flat = theta.reshape(1, -1)
        p_vals = p.astype(float)

        sin_args = p_vals[:, np.newaxis] * theta_flat - mu_vals[:, np.newaxis]
        coeffs = (rho_vals / p_vals)[:, np.newaxis]
        series_sum = np.sum(coeffs * np.sin(sin_args), axis=0)
        cdf_vals = (theta_flat[0] / (2.0 * np.pi)) + (1.0 / np.pi) * series_sum

        anchor = (1.0 / np.pi) * np.sum((rho_vals / p_vals) * np.sin(-mu_vals))
        cdf_vals = cdf_vals - anchor
        cdf_vals = np.where(cdf_vals < 0.0, cdf_vals + 1.0, cdf_vals)
        cdf_vals = np.clip(cdf_vals, 0.0, 1.0)

        # Ensure exact endpoints
        two_pi = 2.0 * np.pi
        cdf_vals[np.isclose(theta_flat[0], 0.0, atol=1e-12)] = 0.0
        cdf_vals[np.isclose(theta_flat[0], two_pi, atol=1e-12)] = 1.0

        if scalar_input:
            return float(cdf_vals.reshape(-1)[0])
        return cdf_vals.reshape(x_arr.shape)

    def _ppf(self, q, delta, alpha, beta, gamma):
        q_arr = np.asarray(q, dtype=float)
        flat = q_arr.reshape(-1)
        if flat.size == 0:
            return q_arr.astype(float)

        delta_val = self._scalar_param(delta)
        alpha_val = self._scalar_param(alpha)
        beta_val = self._scalar_param(beta)
        gamma_val = self._scalar_param(gamma)

        result = np.full_like(flat, np.nan, dtype=float)
        valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0)
        if not np.any(valid):
            shaped = result.reshape(q_arr.shape)
            return float(shaped) if q_arr.ndim == 0 else shaped

        q_valid = flat[valid]
        close_zero = np.isclose(q_valid, 0.0, atol=1e-12, rtol=0.0)
        close_one = np.isclose(q_valid, 1.0, atol=1e-12, rtol=0.0)

        two_pi = 2.0 * np.pi

        theta_vals = np.empty_like(q_valid)
        for idx, q_val in enumerate(q_valid):
            if close_zero[idx]:
                theta_vals[idx] = 0.0
                continue
            if close_one[idx]:
                theta_vals[idx] = two_pi
                continue

            lo, hi = 0.0, two_pi
            theta = q_val * two_pi

            for _ in range(_WRAPSTABLE_NEWTON_MAXITER):
                cdf_theta = float(self._cdf(theta, delta_val, alpha_val, beta_val, gamma_val))
                pdf_theta = float(self._pdf(theta, delta_val, alpha_val, beta_val, gamma_val))
                residual = cdf_theta - q_val

                if abs(residual) <= _WRAPSTABLE_NEWTON_TOL and (hi - lo) <= _WRAPSTABLE_NEWTON_WIDTH_TOL:
                    break

                if residual > 0.0:
                    hi = min(hi, theta)
                else:
                    lo = max(lo, theta)

                if pdf_theta <= 0.0 or not np.isfinite(pdf_theta):
                    theta = 0.5 * (lo + hi)
                    continue

                step = residual / pdf_theta
                theta_new = theta - step
                if not np.isfinite(theta_new) or theta_new <= lo or theta_new >= hi:
                    theta = 0.5 * (lo + hi)
                else:
                    theta = theta_new

                if (hi - lo) <= _WRAPSTABLE_NEWTON_WIDTH_TOL:
                    break

            else:  # pragma: no cover - fallback to bisection if Newton fails
                for _ in range(30):
                    theta_mid = 0.5 * (lo + hi)
                    cdf_mid = float(self._cdf(theta_mid, delta_val, alpha_val, beta_val, gamma_val))
                    if cdf_mid > q_val:
                        hi = theta_mid
                    else:
                        lo = theta_mid
                theta = 0.5 * (lo + hi)

            theta_vals[idx] = (theta + two_pi) % two_pi

        result[valid] = theta_vals
        shaped = result.reshape(q_arr.shape)
        if q_arr.ndim == 0:
            return float(shaped)
        return shaped

    def _rvs(self, delta, alpha, beta, gamma, size=None, random_state=None):
        rng = self._init_rng(random_state)

        delta_val = self._scalar_param(delta)
        alpha_val = self._scalar_param(alpha)
        beta_val = self._scalar_param(beta)
        gamma_val = self._scalar_param(gamma)

        if not (0.0 < alpha_val <= 2.0):
            raise ValueError("`alpha` must lie in (0, 2].")
        if not (-1.0 < beta_val < 1.0):
            raise ValueError("`beta` must lie in (-1, 1).")
        if not (gamma_val > 0.0):
            raise ValueError("`gamma` must be positive.")

        if size is None:
            shape = ()
            total = 1
        else:
            if np.isscalar(size):
                shape = (int(size),)
            else:
                shape = tuple(int(dim) for dim in np.atleast_1d(size))
            total = int(np.prod(shape, dtype=int))
            if total < 0:
                raise ValueError("`size` must describe a non-negative number of samples.")

        if total == 0:
            empty = np.empty(shape, dtype=float)
            return float(empty) if empty.ndim == 0 else empty

        linear_samples = _wrapstable_sample_linear(
            alpha=alpha_val,
            beta=beta_val,
            gamma=gamma_val,
            delta=delta_val,
            size=total,
            rng=rng,
        )

        samples = np.mod(linear_samples, 2.0 * np.pi).reshape(shape)
        if samples.ndim == 0:
            return float(samples)
        return samples

    def rvs(self, delta=None, alpha=None, beta=None, gamma=None, size=None, random_state=None):
        r"""Draw random variates from the wrapped stable distribution."""

        delta_val = self._scalar_param(delta)
        alpha_val = self._scalar_param(alpha)
        beta_val = self._scalar_param(beta)
        gamma_val = self._scalar_param(gamma)
        return super().rvs(delta_val, alpha_val, beta_val, gamma_val, size=size, random_state=random_state)

    def fit(
        self,
        data,
        *,
        weights=None,
        method="mle",
        optimizer="L-BFGS-B",
        options=None,
        alpha_bounds=(1e-3, 2.0),
        beta_bounds=(-0.99, 0.99),
        gamma_bounds=(1e-6, 10.0),
        return_info=False,
        **minimize_kwargs,
    ):
        r"""Estimate ``(delta, alpha, beta, gamma)`` from circular data."""

        minimize_kwargs = self._sanitize_fit_kwargs(minimize_kwargs)
        minimize_kwargs.pop("floc", None)
        minimize_kwargs.pop("fscale", None)

        data_arr = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
        if data_arr.size == 0:
            raise ValueError("`data` must contain at least one observation.")

        if weights is None:
            w = np.ones_like(data_arr, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            if np.any(w < 0):
                raise ValueError("`weights` must be non-negative.")
            w = np.broadcast_to(w, data_arr.shape).astype(float, copy=False).ravel()

        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0.0:
            raise ValueError("Sum of weights must be positive.")
        n_eff = float(w_sum**2 / np.sum(w**2))

        def weighted_moment(p):
            return np.sum(w * np.exp(1j * p * data_arr)) / w_sum

        m1 = weighted_moment(1)
        m2 = weighted_moment(2)

        r1 = float(np.clip(abs(m1), 1e-9, 1 - 1e-9))
        r2 = float(np.clip(abs(m2), 1e-9, 1 - 1e-9))

        if r1 >= 1 - 1e-6 or r2 >= 1 - 1e-6:
            alpha_mom = 1.0
            gamma_mom = 1e-3
        else:
            y1 = float(np.log(-np.log(r1)))
            y2 = float(np.log(-np.log(r2)))
            slope = (y2 - y1) / np.log(2.0)
            alpha_mom = float(np.clip(slope, alpha_bounds[0], alpha_bounds[1]))
            gamma_mom = float(np.exp(y1 / alpha_mom))
            gamma_mom = float(np.clip(gamma_mom, gamma_bounds[0], gamma_bounds[1]))

        phi1 = float(np.angle(m1))
        phi2_raw = float(np.angle(m2))
        phi2 = phi2_raw + 2.0 * np.pi * round((2.0 * phi1 - phi2_raw) / (2.0 * np.pi))

        if abs(alpha_mom - 1.0) <= _WRAPSTABLE_ALPHA_TOL:
            B1 = (2.0 / np.pi) * gamma_mom * np.log(gamma_mom)
            B2 = (2.0 / np.pi) * (gamma_mom * 2.0) * np.log(gamma_mom * 2.0)
            denom = B2 - 2.0 * B1
            if abs(denom) < 1e-8:
                beta_mom = 0.0
                delta_mom = phi1
            else:
                beta_mom = (phi2 - 2.0 * phi1) / denom
                beta_mom = float(np.clip(beta_mom, beta_bounds[0], beta_bounds[1]))
                delta_mom = phi1 - beta_mom * B1
        else:
            A = np.tan(0.5 * np.pi * alpha_mom)
            B1 = (gamma_mom) ** alpha_mom - gamma_mom
            B2 = (gamma_mom * 2.0) ** alpha_mom - gamma_mom * 2.0
            denom = A * (B2 - 2.0 * B1)
            if abs(denom) < 1e-8:
                beta_mom = 0.0
                delta_mom = phi1
            else:
                beta_mom = (phi2 - 2.0 * phi1) / denom
                beta_mom = float(np.clip(beta_mom, beta_bounds[0], beta_bounds[1]))
                delta_mom = phi1 - beta_mom * A * B1

        delta_mom = float(np.mod(delta_mom, 2.0 * np.pi))

        if method == "moments":
            estimates = (delta_mom, alpha_mom, beta_mom, gamma_mom)
            if return_info:
                info = {
                    "method": "moments",
                    "converged": True,
                    "n_effective": n_eff,
                }
                return estimates, info
            return estimates

        method_key = str(method).lower()
        if method_key != "mle":
            raise ValueError("`method` must be one of {'mle', 'moments' }.")

        def nll(params):
            delta_param, alpha_param, beta_param, gamma_param = params
            if not (0.0 <= delta_param <= 2.0 * np.pi):
                return np.inf
            if not (alpha_bounds[0] <= alpha_param <= alpha_bounds[1]):
                return np.inf
            if not (beta_bounds[0] <= beta_param <= beta_bounds[1]):
                return np.inf
            if not (gamma_bounds[0] <= gamma_param <= gamma_bounds[1]):
                return np.inf

            pdf_vals = self._pdf(data_arr, delta_param, alpha_param, beta_param, gamma_param)
            if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)):
                return np.inf
            return float(-np.sum(w * np.log(pdf_vals)))

        delta_candidates = np.mod(
            np.array([delta_mom, phi1, phi2 / 2.0]), 2.0 * np.pi
        )
        alpha_candidates = np.clip(
            np.array([alpha_mom, 1.0, min(1.9, alpha_mom * 1.2)]), alpha_bounds[0], alpha_bounds[1]
        )
        beta_candidates = np.clip(
            np.array([beta_mom, 0.0, np.sign(beta_mom) * 0.5]), beta_bounds[0], beta_bounds[1]
        )
        gamma_candidates = np.clip(
            np.array([gamma_mom, max(gamma_bounds[0], gamma_mom * 0.8), min(gamma_bounds[1], gamma_mom * 1.2)]),
            gamma_bounds[0],
            gamma_bounds[1],
        )

        best_params = (delta_mom, alpha_mom, beta_mom, gamma_mom)
        best_score = nll(best_params)
        for d0 in delta_candidates:
            for a0 in alpha_candidates:
                for b0 in beta_candidates:
                    for g0 in gamma_candidates:
                        cand = (float(d0), float(a0), float(b0), float(g0))
                        score = nll(cand)
                        if score < best_score:
                            best_score = score
                            best_params = cand

        bounds = [
            (0.0, 2.0 * np.pi),
            tuple(alpha_bounds),
            tuple(beta_bounds),
            tuple(gamma_bounds),
        ]

        init = np.array(best_params, dtype=float)
        options = {} if options is None else dict(options)

        optimizer_used = optimizer
        result = minimize(
            nll,
            init,
            method=optimizer,
            bounds=bounds,
            options=options,
            **minimize_kwargs,
        )

        if not result.success and optimizer != "Powell":
            fallback = minimize(
                nll,
                init,
                method="Powell",
                bounds=bounds,
                options={},
                **minimize_kwargs,
            )
            if fallback.success:
                result = fallback
                optimizer_used = "Powell"

        if not result.success:
            raise RuntimeError(f"Maximum likelihood fit failed: {result.message}")

        delta_hat = float(np.mod(result.x[0], 2.0 * np.pi))
        alpha_hat = float(np.clip(result.x[1], alpha_bounds[0], alpha_bounds[1]))
        beta_hat = float(np.clip(result.x[2], beta_bounds[0], beta_bounds[1]))
        gamma_hat = float(np.clip(result.x[3], gamma_bounds[0], gamma_bounds[1]))

        estimates = (delta_hat, alpha_hat, beta_hat, gamma_hat)
        if not return_info:
            return estimates

        info = {
            "method": "mle",
            "loglik": float(-result.fun),
            "n_effective": n_eff,
            "converged": bool(result.success),
            "optimizer": optimizer_used,
            "nit": getattr(result, "nit", np.nan),
            "nfev": getattr(result, "nfev", np.nan),
            "message": result.message,
        }
        return estimates, info

    def _get_series_terms(self, delta, alpha, beta, gamma):
        delta_s = self._scalar_param(delta)
        alpha_s = self._scalar_param(alpha)
        beta_s = self._scalar_param(beta)
        gamma_s = self._scalar_param(gamma)
        key = self._normalization_cache_key(delta_s, alpha_s, beta_s, gamma_s)
        if key is None:
            return self._compute_series_terms(delta_s, alpha_s, beta_s, gamma_s)
        cache = self._series_cache
        if key not in cache:
            cache[key] = self._compute_series_terms(delta_s, alpha_s, beta_s, gamma_s)
        return cache[key]

    def _compute_series_terms(self, delta, alpha, beta, gamma):
        if gamma <= 0.0:
            raise ValueError("`gamma` must be positive for wrapstable.")

        def _initial_order(tol):
            if tol <= 0.0:
                return 1
            log_term = -np.log(tol)
            if log_term <= 0.0:
                return 1
            if not np.isfinite(alpha) or alpha <= 0.0:
                return 1

            exponent = (np.log(log_term) / alpha) - np.log(gamma)
            if not np.isfinite(exponent):
                return _WRAPSTABLE_MAX_TERMS
            if exponent > np.log(_WRAPSTABLE_MAX_TERMS):
                return _WRAPSTABLE_MAX_TERMS

            value = np.exp(exponent)
            if not np.isfinite(value):
                return _WRAPSTABLE_MAX_TERMS
            value = max(1.0, value)
            return int(min(_WRAPSTABLE_MAX_TERMS, np.ceil(value)))

        p_pdf = _initial_order(_WRAPSTABLE_PDF_TOL)
        p_cdf = _initial_order(_WRAPSTABLE_CDF_TOL)
        P = max(1, p_pdf, p_cdf)

        for _ in range(_WRAPSTABLE_MAX_TERMS):
            rho_P = np.exp(-((gamma * P) ** alpha))
            if rho_P <= _WRAPSTABLE_PDF_TOL and rho_P / P <= _WRAPSTABLE_CDF_TOL:
                break
            P += 1
            if P >= _WRAPSTABLE_MAX_TERMS:
                break

        p = np.arange(1, P + 1, dtype=float)
        rho_vals = np.exp(-((gamma * p) ** alpha))

        if abs(alpha - 1.0) <= _WRAPSTABLE_ALPHA_TOL:
            mu_vals = delta * p + (2.0 / np.pi) * beta * gamma * p * np.log(gamma * p)
        else:
            mu_vals = delta * p + beta * np.tan(0.5 * np.pi * alpha) * (
                (gamma * p) ** alpha - gamma * p
            )

        return rho_vals, mu_vals, p

    @staticmethod
    def _scalar_param(value):
        arr = np.asarray(value, dtype=float)
        if arr.size == 1:
            return float(np.asarray(arr, dtype=float).reshape(-1)[0])
        first = float(arr.flat[0])
        if not np.allclose(arr, first):
            raise ValueError(
                "wrapstable parameters must be scalar; vectorised parameters are not supported "
                "because Fourier series coefficients are cached per parameter set."
            )
        return first

pdf(x, delta, alpha, beta, gamma, *args, **kwargs)

Probability density function of the Wrapped Stable distribution.

\[ f(\theta) = \frac{1}{2\pi} \left[1 + 2 \sum_{p=1}^{\infty} \rho_p \cos\left(p(\theta - \mu_p)\right)\right] \]

, where \(\rho_p\) is the \(p\)th mean resultant length and \(\mu_p\) is the \(p\)th mean direction:

\[ \rho_p = \exp\left(-(\gamma p)^\alpha\right) \]
\[ \mu_p = \begin{cases} \delta p + \beta \tan\left(\frac{\pi \alpha}{2}\right) \left((\gamma p)^\alpha - \gamma p\right), & \alpha \neq 1 \\ \delta p - \beta \frac{2}{\pi} \log(\gamma p), & \text{if } \alpha = 1 \end{cases} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the PDF, defined on the interval \([0, 2\pi)\).

required
delta float

Location parameter, \(0 \leq \delta \leq 2\pi\). This is the mean direction of the distribution.

required
alpha float

Stability parameter, \(0 < \alpha \leq 2\). Higher values indicate heavier tails.

required
beta float

Skewness parameter, \(-1 < \beta < 1\). Controls the asymmetry of the distribution.

required
gamma float

Scale parameter, \(\gamma > 0\). Scales the distribution.

required

Returns:

Name Type Description
pdf_values array_like

Values of the probability density function at the specified points.

Source code in pycircstat2/distributions.py
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
def pdf(self, x, delta, alpha, beta, gamma, *args, **kwargs):
    r"""
    Probability density function of the Wrapped Stable distribution.

    $$
    f(\theta) = \frac{1}{2\pi} \left[1 + 2 \sum_{p=1}^{\infty} \rho_p \cos\left(p(\theta - \mu_p)\right)\right]
    $$

    , where $\rho_p$ is the $p$th mean resultant length and $\mu_p$ is the $p$th mean direction:

    $$
    \rho_p = \exp\left(-(\gamma p)^\alpha\right)
    $$

    $$
    \mu_p = 
    \begin{cases}
        \delta p + \beta \tan\left(\frac{\pi \alpha}{2}\right) \left((\gamma p)^\alpha - \gamma p\right), & \alpha \neq 1 \\
        \delta p - \beta \frac{2}{\pi} \log(\gamma p), & \text{if } \alpha = 1
    \end{cases}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
    delta : float
        Location parameter, $0 \leq \delta \leq 2\pi$. This is the mean direction of the distribution.
    alpha : float
        Stability parameter, $0 < \alpha \leq 2$. Higher values indicate heavier tails.
    beta : float
        Skewness parameter, $-1 < \beta < 1$. Controls the asymmetry of the distribution.
    gamma : float
        Scale parameter, $\gamma > 0$. Scales the distribution.

    Returns
    -------
    pdf_values : array_like
        Values of the probability density function at the specified points.
    """
    return super().pdf(x, delta, alpha, beta, gamma, *args, **kwargs)

rvs(delta=None, alpha=None, beta=None, gamma=None, size=None, random_state=None)

Draw random variates from the wrapped stable distribution.

Source code in pycircstat2/distributions.py
7755
7756
7757
7758
7759
7760
7761
7762
def rvs(self, delta=None, alpha=None, beta=None, gamma=None, size=None, random_state=None):
    r"""Draw random variates from the wrapped stable distribution."""

    delta_val = self._scalar_param(delta)
    alpha_val = self._scalar_param(alpha)
    beta_val = self._scalar_param(beta)
    gamma_val = self._scalar_param(gamma)
    return super().rvs(delta_val, alpha_val, beta_val, gamma_val, size=size, random_state=random_state)

fit(data, *, weights=None, method='mle', optimizer='L-BFGS-B', options=None, alpha_bounds=(0.001, 2.0), beta_bounds=(-0.99, 0.99), gamma_bounds=(1e-06, 10.0), return_info=False, **minimize_kwargs)

Estimate (delta, alpha, beta, gamma) from circular data.

Source code in pycircstat2/distributions.py
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
def fit(
    self,
    data,
    *,
    weights=None,
    method="mle",
    optimizer="L-BFGS-B",
    options=None,
    alpha_bounds=(1e-3, 2.0),
    beta_bounds=(-0.99, 0.99),
    gamma_bounds=(1e-6, 10.0),
    return_info=False,
    **minimize_kwargs,
):
    r"""Estimate ``(delta, alpha, beta, gamma)`` from circular data."""

    minimize_kwargs = self._sanitize_fit_kwargs(minimize_kwargs)
    minimize_kwargs.pop("floc", None)
    minimize_kwargs.pop("fscale", None)

    data_arr = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
    if data_arr.size == 0:
        raise ValueError("`data` must contain at least one observation.")

    if weights is None:
        w = np.ones_like(data_arr, dtype=float)
    else:
        w = np.asarray(weights, dtype=float)
        if np.any(w < 0):
            raise ValueError("`weights` must be non-negative.")
        w = np.broadcast_to(w, data_arr.shape).astype(float, copy=False).ravel()

    w_sum = float(np.sum(w))
    if not np.isfinite(w_sum) or w_sum <= 0.0:
        raise ValueError("Sum of weights must be positive.")
    n_eff = float(w_sum**2 / np.sum(w**2))

    def weighted_moment(p):
        return np.sum(w * np.exp(1j * p * data_arr)) / w_sum

    m1 = weighted_moment(1)
    m2 = weighted_moment(2)

    r1 = float(np.clip(abs(m1), 1e-9, 1 - 1e-9))
    r2 = float(np.clip(abs(m2), 1e-9, 1 - 1e-9))

    if r1 >= 1 - 1e-6 or r2 >= 1 - 1e-6:
        alpha_mom = 1.0
        gamma_mom = 1e-3
    else:
        y1 = float(np.log(-np.log(r1)))
        y2 = float(np.log(-np.log(r2)))
        slope = (y2 - y1) / np.log(2.0)
        alpha_mom = float(np.clip(slope, alpha_bounds[0], alpha_bounds[1]))
        gamma_mom = float(np.exp(y1 / alpha_mom))
        gamma_mom = float(np.clip(gamma_mom, gamma_bounds[0], gamma_bounds[1]))

    phi1 = float(np.angle(m1))
    phi2_raw = float(np.angle(m2))
    phi2 = phi2_raw + 2.0 * np.pi * round((2.0 * phi1 - phi2_raw) / (2.0 * np.pi))

    if abs(alpha_mom - 1.0) <= _WRAPSTABLE_ALPHA_TOL:
        B1 = (2.0 / np.pi) * gamma_mom * np.log(gamma_mom)
        B2 = (2.0 / np.pi) * (gamma_mom * 2.0) * np.log(gamma_mom * 2.0)
        denom = B2 - 2.0 * B1
        if abs(denom) < 1e-8:
            beta_mom = 0.0
            delta_mom = phi1
        else:
            beta_mom = (phi2 - 2.0 * phi1) / denom
            beta_mom = float(np.clip(beta_mom, beta_bounds[0], beta_bounds[1]))
            delta_mom = phi1 - beta_mom * B1
    else:
        A = np.tan(0.5 * np.pi * alpha_mom)
        B1 = (gamma_mom) ** alpha_mom - gamma_mom
        B2 = (gamma_mom * 2.0) ** alpha_mom - gamma_mom * 2.0
        denom = A * (B2 - 2.0 * B1)
        if abs(denom) < 1e-8:
            beta_mom = 0.0
            delta_mom = phi1
        else:
            beta_mom = (phi2 - 2.0 * phi1) / denom
            beta_mom = float(np.clip(beta_mom, beta_bounds[0], beta_bounds[1]))
            delta_mom = phi1 - beta_mom * A * B1

    delta_mom = float(np.mod(delta_mom, 2.0 * np.pi))

    if method == "moments":
        estimates = (delta_mom, alpha_mom, beta_mom, gamma_mom)
        if return_info:
            info = {
                "method": "moments",
                "converged": True,
                "n_effective": n_eff,
            }
            return estimates, info
        return estimates

    method_key = str(method).lower()
    if method_key != "mle":
        raise ValueError("`method` must be one of {'mle', 'moments' }.")

    def nll(params):
        delta_param, alpha_param, beta_param, gamma_param = params
        if not (0.0 <= delta_param <= 2.0 * np.pi):
            return np.inf
        if not (alpha_bounds[0] <= alpha_param <= alpha_bounds[1]):
            return np.inf
        if not (beta_bounds[0] <= beta_param <= beta_bounds[1]):
            return np.inf
        if not (gamma_bounds[0] <= gamma_param <= gamma_bounds[1]):
            return np.inf

        pdf_vals = self._pdf(data_arr, delta_param, alpha_param, beta_param, gamma_param)
        if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)):
            return np.inf
        return float(-np.sum(w * np.log(pdf_vals)))

    delta_candidates = np.mod(
        np.array([delta_mom, phi1, phi2 / 2.0]), 2.0 * np.pi
    )
    alpha_candidates = np.clip(
        np.array([alpha_mom, 1.0, min(1.9, alpha_mom * 1.2)]), alpha_bounds[0], alpha_bounds[1]
    )
    beta_candidates = np.clip(
        np.array([beta_mom, 0.0, np.sign(beta_mom) * 0.5]), beta_bounds[0], beta_bounds[1]
    )
    gamma_candidates = np.clip(
        np.array([gamma_mom, max(gamma_bounds[0], gamma_mom * 0.8), min(gamma_bounds[1], gamma_mom * 1.2)]),
        gamma_bounds[0],
        gamma_bounds[1],
    )

    best_params = (delta_mom, alpha_mom, beta_mom, gamma_mom)
    best_score = nll(best_params)
    for d0 in delta_candidates:
        for a0 in alpha_candidates:
            for b0 in beta_candidates:
                for g0 in gamma_candidates:
                    cand = (float(d0), float(a0), float(b0), float(g0))
                    score = nll(cand)
                    if score < best_score:
                        best_score = score
                        best_params = cand

    bounds = [
        (0.0, 2.0 * np.pi),
        tuple(alpha_bounds),
        tuple(beta_bounds),
        tuple(gamma_bounds),
    ]

    init = np.array(best_params, dtype=float)
    options = {} if options is None else dict(options)

    optimizer_used = optimizer
    result = minimize(
        nll,
        init,
        method=optimizer,
        bounds=bounds,
        options=options,
        **minimize_kwargs,
    )

    if not result.success and optimizer != "Powell":
        fallback = minimize(
            nll,
            init,
            method="Powell",
            bounds=bounds,
            options={},
            **minimize_kwargs,
        )
        if fallback.success:
            result = fallback
            optimizer_used = "Powell"

    if not result.success:
        raise RuntimeError(f"Maximum likelihood fit failed: {result.message}")

    delta_hat = float(np.mod(result.x[0], 2.0 * np.pi))
    alpha_hat = float(np.clip(result.x[1], alpha_bounds[0], alpha_bounds[1]))
    beta_hat = float(np.clip(result.x[2], beta_bounds[0], beta_bounds[1]))
    gamma_hat = float(np.clip(result.x[3], gamma_bounds[0], gamma_bounds[1]))

    estimates = (delta_hat, alpha_hat, beta_hat, gamma_hat)
    if not return_info:
        return estimates

    info = {
        "method": "mle",
        "loglik": float(-result.fun),
        "n_effective": n_eff,
        "converged": bool(result.success),
        "optimizer": optimizer_used,
        "nit": getattr(result, "nit", np.nan),
        "nfev": getattr(result, "nfev", np.nan),
        "message": result.message,
    }
    return estimates, info

katojones_gen

Bases: CircularContinuous

Kato--Jones (2015) Distribution

katojones

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function via adaptive Fourier series.

rvs

Random variates obtained by inverting the CDF.

fit

Method-of-moments or maximum-likelihood parameter estimation.

Notes

Implements the tractable four-parameter unimodal family proposed by Kato and Jones (2015). Parameters control the first two trigonometric moments: mu sets the mean direction, gamma the mean resultant length, and rho/lam encode the magnitude/phase of the second-order moment. Feasible parameter tuples satisfy 0 <= mu < 2*pi, 0 <= gamma < 1, 0 <= rho < 1, 0 <= lam < 2*pi together with the constraint enforced in _argcheck.

Special cases include the uniform distribution (gamma = 0), the cardioid (rho = 0) and the wrapped Cauchy (lambda = 0 with gamma = rho).

References
  • Kato, S., & Jones, M. C. (2015). A tractable and interpretable four-parameter family of unimodal distributions on the circle. Biometrika, 102(1), 181-190.
Source code in pycircstat2/distributions.py
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
class katojones_gen(CircularContinuous):
    """
    Kato--Jones (2015) Distribution

    ![katojones](../images/circ-mod-katojones.png)

    Methods
    -------
    pdf(x, mu, gamma, rho, lam)
        Probability density function.
    cdf(x, mu, gamma, rho, lam)
        Cumulative distribution function via adaptive Fourier series.

    rvs(mu, gamma, rho, lam, size=None, random_state=None)
        Random variates obtained by inverting the CDF.
    fit(data, method=\"moments\" | \"mle\", ...)
        Method-of-moments or maximum-likelihood parameter estimation.
    Notes
    -----
    Implements the tractable four-parameter unimodal family proposed by Kato and
    Jones (2015). Parameters control the first two trigonometric moments:
    ``mu`` sets the mean direction, ``gamma`` the mean resultant length, and
    ``rho``/``lam`` encode the magnitude/phase of the second-order moment.
    Feasible parameter tuples satisfy ``0 <= mu < 2*pi``, ``0 <= gamma < 1``,
    ``0 <= rho < 1``, ``0 <= lam < 2*pi`` together with the constraint enforced
    in `_argcheck`.

    Special cases include the uniform distribution (``gamma = 0``), the cardioid
    (``rho = 0``) and the wrapped Cauchy (``lambda = 0`` with ``gamma = rho``).

    References
    ----------
    - Kato, S., & Jones, M. C. (2015). *A tractable and interpretable
      four-parameter family of unimodal distributions on the circle*. Biometrika,
      102(1), 181-190.
    """

    _moment_tolerance = 1e-12

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._series_cache = {}

    def _clear_normalization_cache(self):
        super()._clear_normalization_cache()
        self._series_cache = {}

    @staticmethod
    def _scalar_param(value):
        arr = np.asarray(value, dtype=float)
        if arr.size == 1:
            return float(np.asarray(arr, dtype=float).reshape(-1)[0])
        first = float(arr.flat[0])
        if not np.allclose(arr, first):
            raise ValueError(
                "katojones parameters must be scalar; vectorised parameters are not supported "
                "because series expansions are cached per parameter set."
            )
        return first

    def _argcheck(self, mu, gamma, rho, lam):
        try:
            mu_arr, gamma_arr, rho_arr, lam_arr = np.broadcast_arrays(mu, gamma, rho, lam)
        except ValueError:
            return False

        base = (
            (mu_arr >= 0.0)
            & (mu_arr < 2.0 * np.pi)
            & (gamma_arr >= 0.0)
            & (gamma_arr < 1.0)
            & (rho_arr >= 0.0)
            & (rho_arr < 1.0)
            & (lam_arr >= 0.0)
            & (lam_arr < 2.0 * np.pi)
        )

        cos_lam = np.cos(lam_arr)
        sin_lam = np.sin(lam_arr)
        constraint_val = (rho_arr * cos_lam - gamma_arr) ** 2 + (rho_arr * sin_lam) ** 2
        constraint_limit = (1.0 - gamma_arr) ** 2 + 1e-12
        admissible = constraint_val <= constraint_limit
        return base & admissible

    def _pdf(self, x, mu, gamma, rho, lam):
        x_arr = np.asarray(x, dtype=float)
        delta = x_arr - mu
        denom = 1.0 + rho**2 - 2.0 * rho * np.cos(delta - lam)
        denom = np.clip(denom, 1e-15, None)
        numerator = 1.0 + (2.0 * gamma * (np.cos(delta) - rho * np.cos(lam))) / denom
        pdf = numerator / (2.0 * np.pi)
        pdf = np.clip(pdf, 0.0, None)
        if np.isscalar(x):
            return np.asarray(pdf, dtype=float).reshape(-1)[0]
        return pdf

    def pdf(self, x, mu, gamma, rho, lam, *args, **kwargs):
        r"""
        Probability density function of the Kato--Jones (2015) distribution.

        $$
        g(\theta) = \frac{1}{2\pi}\left[1 + \frac{2\gamma\,(\cos(\theta-\mu) - \rho\cos\lambda)}
        {1 + \rho^2 - 2\rho\cos(\theta-\mu-\lambda)}\right]
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, $0 \leq \mu < 2\pi$.
        gamma : float
            Mean resultant length, $0 \leq \gamma < 1$.
        rho : float
            Second-order magnitude, $0 \leq \rho < 1$.
        lam : float
            Second-order phase, $0 \leq \lambda < 2\pi$.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, gamma, rho, lam, *args, **kwargs)

    def _cdf(self, x, mu, gamma, rho, lam):
        x_arr = np.asarray(x, dtype=float)
        scalar_input = x_arr.ndim == 0
        flat = x_arr.reshape(-1)

        mu_val = float(np.mod(self._scalar_param(mu), 2.0 * np.pi))
        gamma_val = float(np.clip(self._scalar_param(gamma), 0.0, 1.0 - 1e-12))
        rho_val = float(np.clip(self._scalar_param(rho), 0.0, 1.0 - 1e-12))
        lam_val = float(np.mod(self._scalar_param(lam), 2.0 * np.pi))

        if gamma_val <= _KJ_GAMMA_TOL:
            cdf_flat = flat / (2.0 * np.pi)
        else:
            series = self._get_series_terms(mu_val, gamma_val, rho_val, lam_val)
            cdf_raw = self._evaluate_cdf_series(flat, mu_val, gamma_val, rho_val, lam_val, series=series)
            cdf_flat = np.mod(cdf_raw, 1.0)

        cdf_flat = np.clip(cdf_flat, 0.0, 1.0)
        cdf_flat[np.isclose(flat, 0.0, atol=1e-12)] = 0.0
        cdf_flat[np.isclose(flat, 2.0 * np.pi, atol=1e-12)] = 1.0

        if scalar_input:
            return float(cdf_flat[0])
        return cdf_flat.reshape(x_arr.shape)

    def cdf(self, x, mu, gamma, rho, lam, *args, **kwargs):
        r"""
        Cumulative distribution function of the Kato--Jones (2015) distribution.

        The CDF has the closed-form Fourier expansion

        $$
        G(\theta) = \frac{\theta}{2\pi}
        + \frac{1}{\pi}\sum_{p=1}^{\infty} \frac{\gamma \rho^{p-1}}{p}
        \sin\!\bigl(p\theta - [p\mu + (p-1)\lambda]\bigr),
        $$

        which is evaluated adaptively by truncating the series once the tail
        contribution drops below a specified tolerance. No numerical quadrature
        is required.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            Mean direction, $0 \leq \mu < 2\pi$.
        gamma : float
            Mean resultant length, $0 \leq \gamma < 1$.
        rho : float
            Second-order magnitude, $0 \leq \rho < 1$.
        lam : float
            Second-order phase, $0 \leq \lambda < 2\pi$.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, gamma, rho, lam, *args, **kwargs)

    def _logpdf(self, x, mu, gamma, rho, lam):
        pdf_vals = self._pdf(x, mu, gamma, rho, lam)
        return np.log(np.clip(pdf_vals, np.finfo(float).tiny, None))

    def logpdf(self, x, mu, gamma, rho, lam, *args, **kwargs):
        r"""
        Logarithm of the probability density function of the Kato--Jones (2015)
        distribution.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the log-PDF.
        mu : float
            Mean direction, $0 \leq \mu < 2\pi$.
        gamma : float
            Mean resultant length, $0 \leq \gamma < 1$.
        rho : float
            Second-order magnitude, $0 \leq \rho < 1$.
        lam : float
            Second-order phase, $0 \leq \lambda < 2\pi$.

        Returns
        -------
        logpdf_values : array_like
            Logarithm of the probability density function evaluated at `x`.
        """
        return super().logpdf(x, mu, gamma, rho, lam, *args, **kwargs)

    def _ppf(self, q, mu, gamma, rho, lam):
        mu_val = float(np.mod(self._scalar_param(mu), 2.0 * np.pi))
        gamma_val = float(np.clip(self._scalar_param(gamma), 0.0, 1.0 - 1e-12))
        rho_val = float(np.clip(self._scalar_param(rho), 0.0, 1.0 - 1e-12))
        lam_val = float(np.mod(self._scalar_param(lam), 2.0 * np.pi))

        q_arr = np.asarray(q, dtype=float)
        if q_arr.size == 0:
            return q_arr.astype(float)

        if gamma_val <= _KJ_GAMMA_TOL:
            return (2.0 * np.pi * q_arr).astype(float)

        scalar_input = q_arr.ndim == 0
        flat = q_arr.reshape(-1)
        result = np.full_like(flat, np.nan, dtype=float)

        valid = np.isfinite(flat) & (flat >= 0.0) & (flat <= 1.0)
        if not np.any(valid):
            return float(result) if scalar_input else result.reshape(q_arr.shape)

        series = self._get_series_terms(mu_val, gamma_val, rho_val, lam_val)
        two_pi = 2.0 * np.pi

        def cdf_single(theta):
            value = self._evaluate_cdf_series(theta, mu_val, gamma_val, rho_val, lam_val, series=series)
            value = np.mod(value, 1.0)
            return float(np.clip(value, 0.0, 1.0))

        for idx, q_val in enumerate(flat):
            if not valid[idx]:
                continue
            if np.isclose(q_val, 0.0, atol=1e-12):
                result[idx] = 0.0
                continue
            if np.isclose(q_val, 1.0, atol=1e-12):
                result[idx] = two_pi
                continue

            lo, hi = 0.0, two_pi
            theta = q_val * two_pi

            for _ in range(_KJ_NEWTON_MAXITER):
                cdf_theta = cdf_single(theta)
                pdf_theta = float(self._pdf(theta, mu_val, gamma_val, rho_val, lam_val))
                residual = cdf_theta - q_val

                if abs(residual) <= _KJ_NEWTON_TOL and (hi - lo) <= _KJ_NEWTON_WIDTH_TOL:
                    break

                if residual > 0.0:
                    hi = min(hi, theta)
                else:
                    lo = max(lo, theta)

                if pdf_theta <= 0.0 or not np.isfinite(pdf_theta):
                    theta = 0.5 * (lo + hi)
                    continue

                step = residual / pdf_theta
                theta_candidate = theta - step
                if not np.isfinite(theta_candidate) or theta_candidate <= lo or theta_candidate >= hi:
                    theta = 0.5 * (lo + hi)
                else:
                    theta = theta_candidate

                if (hi - lo) <= _KJ_NEWTON_WIDTH_TOL:
                    break
            else:
                for _ in range(30):
                    mid = 0.5 * (lo + hi)
                    if cdf_single(mid) > q_val:
                        hi = mid
                    else:
                        lo = mid
                theta = 0.5 * (lo + hi)

            result[idx] = theta % two_pi

        if scalar_input:
            return float(result[0])
        return result.reshape(q_arr.shape)

    def _rvs(self, mu, gamma, rho, lam, size=None, random_state=None):
        rng = self._init_rng(random_state)

        if size is None:
            u = rng.random()
            return float(self._ppf(u, mu, gamma, rho, lam))

        if np.isscalar(size):
            shape = (int(size),)
        else:
            shape = tuple(int(dim) for dim in np.atleast_1d(size))

        total = int(np.prod(shape, dtype=int))
        if total < 0:
            raise ValueError("`size` must describe a non-negative number of samples.")
        if total == 0:
            return np.empty(shape, dtype=float)

        u = rng.random(size=shape)
        return self._ppf(u, mu, gamma, rho, lam)

    def rvs(self, mu=None, gamma=None, rho=None, lam=None, size=None, random_state=None):
        mu_val = self._scalar_param(mu)
        gamma_val = self._scalar_param(gamma)
        rho_val = self._scalar_param(rho)
        lam_val = self._scalar_param(lam)
        return super().rvs(mu_val, gamma_val, rho_val, lam_val, size=size, random_state=random_state)

    def trig_moment(self, p: int = 1, *args, **kwargs) -> complex:
        shape_args, non_shape_kwargs = self._separate_shape_parameters(
            args, kwargs, "trig_moment"
        )
        call_kwargs = self._prepare_call_kwargs(non_shape_kwargs, "trig_moment")
        params = self._parse_args(*shape_args, **call_kwargs)[0]
        if len(params) != 4:
            raise ValueError("Expected parameters (mu, gamma, rho, lam).")
        mu, gamma, rho, lam = [float(np.asarray(val, dtype=float)) for val in params]

        if not np.isscalar(p):
            raise ValueError("`p` must be an integer scalar.")
        if int(round(p)) != p:
            raise ValueError("`p` must be an integer.")

        k = int(round(p))
        if k == 0:
            return complex(1.0, 0.0)

        abs_k = abs(k)
        mag = float(gamma) if abs_k == 1 else float(gamma * (rho ** (abs_k - 1)))
        angle = abs_k * mu + (abs_k - 1) * lam
        value = mag * np.exp(1j * angle)

        if k < 0:
            return np.conjugate(value)
        return complex(value)

    def _prepare_data_weights(self, data, weights=None):
        data_arr = self._wrap_angles(np.asarray(data, dtype=float)).ravel()
        if data_arr.size == 0:
            raise ValueError("`data` must contain at least one observation.")

        if weights is None:
            w = np.ones_like(data_arr, dtype=float)
        else:
            w = np.asarray(weights, dtype=float)
            try:
                w = np.broadcast_to(w, data_arr.shape).astype(float, copy=False).ravel()
            except ValueError as exc:
                raise ValueError("`weights` must be broadcastable to the data shape.") from exc
            if np.any(w < 0):
                raise ValueError("`weights` must be non-negative.")

        w_sum = float(np.sum(w))
        if not np.isfinite(w_sum) or w_sum <= 0.0:
            raise ValueError("Sum of weights must be positive.")
        n_eff = float(w_sum**2 / np.sum(w**2))
        return data_arr, w, w_sum, n_eff

    def _fit_moments(self, data, *, weights=None, return_info=False):
        data_arr, w, w_sum, n_eff = self._prepare_data_weights(data, weights=weights)

        mu_hat, r1 = circ_mean_and_r(alpha=data_arr, w=w)
        centered = angmod(data_arr - mu_hat)
        cos2 = np.cos(2.0 * centered)
        sin2 = np.sin(2.0 * centered)
        alpha2 = float(np.sum(w * cos2) / w_sum)
        beta2 = float(np.sum(w * sin2) / w_sum)
        mu_hat = self._wrap_direction(float(mu_hat))
        gamma_hat = float(np.clip(r1, 0.0, 1.0 - 1e-9))

        alpha2_proj, beta2_proj = self._project_second_order(gamma_hat, alpha2, beta2)

        if gamma_hat < self._moment_tolerance:
            rho_hat = 0.0
            lam_hat = 0.0
        else:
            r2 = np.hypot(alpha2_proj, beta2_proj)
            rho_hat = float(np.clip(r2 / max(gamma_hat, 1e-12), 0.0, 1.0 - 1e-9))
            lam_hat = float(np.mod(np.arctan2(beta2_proj, alpha2_proj), 2.0 * np.pi))
            if rho_hat < self._moment_tolerance:
                lam_hat = 0.0

        estimates = (mu_hat, gamma_hat, rho_hat, lam_hat)
        if return_info:
            info = {
                "method": "moments",
                "converged": True,
                "n_effective": n_eff,
            }
            return estimates, info
        return estimates

    @staticmethod
    def _project_second_order(gamma, alpha2, beta2):
        gamma = float(gamma)
        radius = gamma * (1.0 - gamma)
        center_alpha = gamma * gamma
        vec_alpha = alpha2 - center_alpha
        vec_beta = beta2
        distance = np.hypot(vec_alpha, vec_beta)
        if radius <= 0.0:
            return center_alpha, 0.0
        if distance <= radius:
            return alpha2, beta2
        if distance == 0.0:
            return center_alpha + radius, 0.0
        scale = radius / distance
        alpha_proj = center_alpha + vec_alpha * scale
        beta_proj = vec_beta * scale
        return alpha_proj, beta_proj

    @staticmethod
    def convert_alpha2_beta2(gamma, alpha2, beta2, *, verify=True):
        """
        Convert second-order moment parameters to (rho, lambda).

        Parameters
        ----------
        gamma : float
            Mean resultant length, 0 <= gamma < 1.
        alpha2 : float
            Second-order cosine moment around mu.
        beta2 : float
            Second-order sine moment around mu.
        verify : bool, optional
            If True (default), check that (alpha2, beta2) lies within the feasible
            disk for the supplied gamma and raise a ValueError if not.

        Returns
        -------
        rho : float
            Second-order magnitude parameter.
        lam : float
            Second-order phase parameter in [0, 2 pi).
        """
        gamma = float(gamma)
        alpha2 = float(alpha2)
        beta2 = float(beta2)

        if not (0.0 <= gamma < 1.0):
            raise ValueError("`gamma` must lie in [0, 1).")

        radius_sq = (gamma * (1.0 - gamma)) ** 2
        center_alpha = gamma * gamma
        dist_sq = (alpha2 - center_alpha) ** 2 + beta2**2

        tol = 1e-12
        if verify and dist_sq > radius_sq + tol:
            raise ValueError(
                f"(alpha2, beta2) = ({alpha2}, {beta2}) is outside the feasible disk "
                f"for gamma={gamma}."
            )

        r2 = np.hypot(alpha2, beta2)
        if gamma <= katojones_gen._moment_tolerance:
            if verify and r2 > tol:
                raise ValueError(
                    "When gamma is approximately zero, alpha2 and beta2 must also be near zero."
                )
            return 0.0, 0.0

        rho = float(np.clip(r2 / gamma, 0.0, 1.0 - 1e-12))
        if r2 <= tol:
            lam = 0.0
        else:
            lam = float(np.mod(np.arctan2(beta2, alpha2), 2.0 * np.pi))
        return rho, lam

    @staticmethod
    def convert_rho_lambda(gamma, rho, lam, *, verify=True):
        """
        Convert (rho, lambda) parameters to second-order moments (alpha2, beta2).

        Parameters
        ----------
        gamma : float
            Mean resultant length, 0 <= gamma < 1.
        rho : float
            Second-order magnitude, 0 <= rho < 1.
        lam : float
            Second-order phase, 0 <= lam < 2*pi.
        verify : bool, optional
            If True (default), ensure (gamma, rho, lam) satisfies the feasibility
            constraint and raise a ValueError otherwise.

        Returns
        -------
        alpha2 : float
            Second-order cosine moment around mu.
        beta2 : float
            Second-order sine moment around mu.
        """
        gamma = float(gamma)
        rho = float(rho)
        lam = float(lam)

        if not (0.0 <= gamma < 1.0):
            raise ValueError("`gamma` must lie in [0, 1).")
        if not (0.0 <= rho < 1.0):
            raise ValueError("`rho` must lie in [0, 1).")

        if verify:
            constraint = (rho * np.cos(lam) - gamma) ** 2 + (rho * np.sin(lam)) ** 2
            if constraint > (1.0 - gamma) ** 2 + 1e-12:
                raise ValueError(
                    f"(gamma, rho, lam)=({gamma}, {rho}, {lam}) violates the feasibility constraint."
                )

        alpha2 = float(gamma * rho * np.cos(lam))
        beta2 = float(gamma * rho * np.sin(lam))
        return alpha2, beta2

    @staticmethod
    def _aux_from_rho_lam(gamma, rho, lam):
        gamma = float(gamma)
        rho = float(rho)
        lam = float(lam)
        gamma = np.clip(gamma, 0.0, 1.0 - 1e-12)
        rho = np.clip(rho, 0.0, 1.0 - 1e-12)
        lam = float(np.mod(lam, 2.0 * np.pi))

        if gamma >= 1.0 - 1e-12:
            return 0.0, 0.0

        denom = max(1e-12, 1.0 - gamma)
        delta_cos = rho * np.cos(lam) - gamma
        delta_sin = rho * np.sin(lam)
        s = float(np.clip(np.hypot(delta_cos, delta_sin) / denom, 0.0, 1.0 - 1e-9))
        phi = float(np.mod(np.arctan2(delta_sin, delta_cos), 2.0 * np.pi))
        if s < katojones_gen._moment_tolerance:
            phi = 0.0
        return s, phi

    @staticmethod
    def _rho_lam_from_aux(gamma, s, phi):
        gamma = float(np.clip(gamma, 0.0, 1.0 - 1e-9))
        s = float(np.clip(s, 0.0, 1.0 - 1e-9))
        phi = float(np.mod(phi, 2.0 * np.pi))

        cos_phi = np.cos(phi)
        sin_phi = np.sin(phi)
        delta_cos = (1.0 - gamma) * s * cos_phi
        delta_sin = (1.0 - gamma) * s * sin_phi
        rho_cos = gamma + delta_cos
        rho_sin = delta_sin
        rho = float(np.clip(np.hypot(rho_cos, rho_sin), 0.0, 1.0 - 1e-9))
        lam = float(np.mod(np.arctan2(rho_sin, rho_cos), 2.0 * np.pi))
        return rho, lam

    def _get_series_terms(self, mu, gamma, rho, lam):
        mu_val = float(np.mod(self._scalar_param(mu), 2.0 * np.pi))
        gamma_val = float(np.clip(self._scalar_param(gamma), 0.0, 1.0 - 1e-12))
        rho_val = float(np.clip(self._scalar_param(rho), 0.0, 1.0 - 1e-12))
        lam_val = float(np.mod(self._scalar_param(lam), 2.0 * np.pi))

        key = self._normalization_cache_key(mu_val, gamma_val, rho_val, lam_val)
        if key is None:
            return self._compute_series_terms(mu_val, gamma_val, rho_val, lam_val)

        cache = self._series_cache
        if key not in cache:
            cache[key] = self._compute_series_terms(mu_val, gamma_val, rho_val, lam_val)
        return cache[key]

    def _compute_series_terms(self, mu, gamma, rho, lam):
        if gamma <= _KJ_GAMMA_TOL or rho <= _KJ_GAMMA_TOL:
            return {
                "coeffs": np.empty(0, dtype=float),
                "phases": np.empty(0, dtype=float),
                "p": np.empty(0, dtype=float),
                "anchor": 0.0,
            }

        rho_val = float(np.clip(rho, 0.0, 1.0 - 1e-12))
        gamma_val = float(np.clip(gamma, 0.0, 1.0 - 1e-12))

        if rho_val == 0.0:
            P = 1
        else:
            P = 1
            for _ in range(_KJ_MAX_TERMS):
                tail = (gamma_val / max(P, 1)) * (rho_val ** max(P - 1, 0)) / max(1e-12, 1.0 - rho_val)
                if tail <= _KJ_CDF_TOL:
                    break
                P += 1
            P = min(P, _KJ_MAX_TERMS)

        p = np.arange(1, P + 1, dtype=float)
        rho_pows = rho_val ** (p - 1.0)
        coeffs = gamma_val * rho_pows / p
        phases = np.mod(p * mu + (p - 1.0) * lam, 2.0 * np.pi)
        anchor = -(1.0 / np.pi) * np.sum(coeffs * np.sin(phases))

        return {
            "coeffs": coeffs,
            "phases": phases,
            "p": p,
            "anchor": float(anchor),
        }

    def _evaluate_cdf_series(self, theta, mu, gamma, rho, lam, *, series=None):
        theta_arr = np.asarray(theta, dtype=float)
        flat = theta_arr.reshape(-1)

        if series is None:
            series = self._get_series_terms(mu, gamma, rho, lam)

        coeffs = series["coeffs"]
        if coeffs.size == 0:
            return (flat / (2.0 * np.pi)).reshape(theta_arr.shape)

        phases = series["phases"]
        p = series["p"][:, np.newaxis]
        theta_col = flat[np.newaxis, :]
        sin_terms = np.sin(p * theta_col - phases[:, np.newaxis])
        series_sum = np.sum(coeffs[:, np.newaxis] * sin_terms, axis=0)
        base = flat / (2.0 * np.pi)
        values = base + (1.0 / np.pi) * series_sum - series["anchor"]
        return values.reshape(theta_arr.shape)

    def _fit_mle(
        self,
        data,
        *,
        weights=None,
        initial,
        optimizer,
        options,
        return_info=False,
        **minimize_kwargs,
    ):
        data_arr, w, w_sum, n_eff = self._prepare_data_weights(data, weights=weights)

        if initial is None:
            initial = self._fit_moments(data_arr, weights=w)

        mu0, gamma0, rho0, lam0 = initial
        mu0 = self._wrap_direction(float(mu0))
        gamma0 = float(np.clip(gamma0, 1e-6, 1.0 - 1e-6))
        lam0 = float(np.mod(lam0, 2.0 * np.pi))
        rho0 = float(np.clip(rho0, 0.0, 1.0 - 1e-6))
        if rho0 < self._moment_tolerance:
            rho0 = 0.0
            lam0 = 0.0
        s0, phi0 = self._aux_from_rho_lam(gamma0, rho0, lam0)
        x0 = np.array([mu0, gamma0, s0, phi0], dtype=float)

        def objective(params):
            mu, gamma, s, phi = params
            mu = self._wrap_direction(float(mu))
            gamma = float(np.clip(gamma, 1e-6, 1.0 - 1e-9))
            s = float(np.clip(s, 0.0, 1.0 - 1e-9))
            phi = float(np.mod(phi, 2.0 * np.pi))
            rho, lam = self._rho_lam_from_aux(gamma, s, phi)
            if not self._argcheck(mu, gamma, rho, lam):
                return 1e12
            pdf_vals = self._pdf(data_arr, mu, gamma, rho, lam)
            if np.any(pdf_vals <= 0.0) or not np.all(np.isfinite(pdf_vals)):
                return 1e12
            return -np.sum(w * np.log(pdf_vals))

        bounds = [
            (0.0, 2.0 * np.pi),
            (1e-6, 1.0 - 1e-6),
            (0.0, 1.0 - 1e-6),
            (0.0, 2.0 * np.pi),
        ]

        result = minimize(
            objective,
            x0,
            method=optimizer,
            bounds=bounds,
            options=options,
            **minimize_kwargs,
        )

        if not result.success:
            fallback_method = "Powell" if optimizer != "Powell" else None
            if fallback_method is not None:
                fallback_result = minimize(
                    objective,
                    x0,
                    method=fallback_method,
                    bounds=bounds,
                    options={},
                    **minimize_kwargs,
                )
                if fallback_result.success:
                    result = fallback_result
            if not result.success:
                raise RuntimeError(f"Maximum likelihood fit failed: {result.message}")

        mu_hat, gamma_hat, s_hat, phi_hat = result.x
        mu_hat = self._wrap_direction(float(mu_hat))
        gamma_hat = float(np.clip(gamma_hat, 0.0, 1.0 - 1e-9))
        s_hat = float(np.clip(s_hat, 0.0, 1.0 - 1e-9))
        phi_hat = float(np.mod(phi_hat, 2.0 * np.pi))
        rho_hat, lam_hat = self._rho_lam_from_aux(gamma_hat, s_hat, phi_hat)

        estimates = (mu_hat, gamma_hat, rho_hat, lam_hat)
        if return_info:
            final_nll = objective(result.x)
            info = {
                "method": "mle",
                "converged": bool(result.success),
                "loglik": float(-final_nll),
                "n_effective": n_eff,
                "nit": getattr(result, "nit", None),
                "optimizer": optimizer,
                "initial": initial,
            }
            return estimates, info
        return estimates

    def fit(
        self,
        data,
        method="moments",
        *,
        weights=None,
        initial=None,
        optimizer="L-BFGS-B",
        options=None,
        return_info=False,
        **kwargs,
    ):
        kwargs = self._clean_loc_scale_kwargs(kwargs, caller="fit")
        kwargs.pop("floc", None)
        kwargs.pop("fscale", None)

        if method == "moments":
            if kwargs:
                raise TypeError("Unexpected optimizer arguments for method='moments'.")
            estimates, info = self._fit_moments(
                data,
                weights=weights,
                return_info=True,
            )
            return (estimates, info) if return_info else estimates

        if method != "mle":
            raise ValueError("method must be either 'moments' or 'mle'.")

        options = {} if options is None else dict(options)
        estimates, info = self._fit_mle(
            data,
            weights=weights,
            initial=initial,
            optimizer=optimizer,
            options=options,
            return_info=True,
            **kwargs,
        )
        return (estimates, info) if return_info else estimates

pdf(x, mu, gamma, rho, lam, *args, **kwargs)

Probability density function of the Kato--Jones (2015) distribution.

\[ g(\theta) = \frac{1}{2\pi}\left[1 + \frac{2\gamma\,(\cos(\theta-\mu) - \rho\cos\lambda)} {1 + \rho^2 - 2\rho\cos(\theta-\mu-\lambda)}\right] \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, \(0 \leq \mu < 2\pi\).

required
gamma float

Mean resultant length, \(0 \leq \gamma < 1\).

required
rho float

Second-order magnitude, \(0 \leq \rho < 1\).

required
lam float

Second-order phase, \(0 \leq \lambda < 2\pi\).

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
def pdf(self, x, mu, gamma, rho, lam, *args, **kwargs):
    r"""
    Probability density function of the Kato--Jones (2015) distribution.

    $$
    g(\theta) = \frac{1}{2\pi}\left[1 + \frac{2\gamma\,(\cos(\theta-\mu) - \rho\cos\lambda)}
    {1 + \rho^2 - 2\rho\cos(\theta-\mu-\lambda)}\right]
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, $0 \leq \mu < 2\pi$.
    gamma : float
        Mean resultant length, $0 \leq \gamma < 1$.
    rho : float
        Second-order magnitude, $0 \leq \rho < 1$.
    lam : float
        Second-order phase, $0 \leq \lambda < 2\pi$.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, gamma, rho, lam, *args, **kwargs)

cdf(x, mu, gamma, rho, lam, *args, **kwargs)

Cumulative distribution function of the Kato--Jones (2015) distribution.

The CDF has the closed-form Fourier expansion

\[ G(\theta) = \frac{\theta}{2\pi} + \frac{1}{\pi}\sum_{p=1}^{\infty} \frac{\gamma \rho^{p-1}}{p} \sin\!\bigl(p\theta - [p\mu + (p-1)\lambda]\bigr), \]

which is evaluated adaptively by truncating the series once the tail contribution drops below a specified tolerance. No numerical quadrature is required.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

Mean direction, \(0 \leq \mu < 2\pi\).

required
gamma float

Mean resultant length, \(0 \leq \gamma < 1\).

required
rho float

Second-order magnitude, \(0 \leq \rho < 1\).

required
lam float

Second-order phase, \(0 \leq \lambda < 2\pi\).

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
def cdf(self, x, mu, gamma, rho, lam, *args, **kwargs):
    r"""
    Cumulative distribution function of the Kato--Jones (2015) distribution.

    The CDF has the closed-form Fourier expansion

    $$
    G(\theta) = \frac{\theta}{2\pi}
    + \frac{1}{\pi}\sum_{p=1}^{\infty} \frac{\gamma \rho^{p-1}}{p}
    \sin\!\bigl(p\theta - [p\mu + (p-1)\lambda]\bigr),
    $$

    which is evaluated adaptively by truncating the series once the tail
    contribution drops below a specified tolerance. No numerical quadrature
    is required.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        Mean direction, $0 \leq \mu < 2\pi$.
    gamma : float
        Mean resultant length, $0 \leq \gamma < 1$.
    rho : float
        Second-order magnitude, $0 \leq \rho < 1$.
    lam : float
        Second-order phase, $0 \leq \lambda < 2\pi$.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, gamma, rho, lam, *args, **kwargs)

logpdf(x, mu, gamma, rho, lam, *args, **kwargs)

Logarithm of the probability density function of the Kato--Jones (2015) distribution.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the log-PDF.

required
mu float

Mean direction, \(0 \leq \mu < 2\pi\).

required
gamma float

Mean resultant length, \(0 \leq \gamma < 1\).

required
rho float

Second-order magnitude, \(0 \leq \rho < 1\).

required
lam float

Second-order phase, \(0 \leq \lambda < 2\pi\).

required

Returns:

Name Type Description
logpdf_values array_like

Logarithm of the probability density function evaluated at x.

Source code in pycircstat2/distributions.py
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
def logpdf(self, x, mu, gamma, rho, lam, *args, **kwargs):
    r"""
    Logarithm of the probability density function of the Kato--Jones (2015)
    distribution.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the log-PDF.
    mu : float
        Mean direction, $0 \leq \mu < 2\pi$.
    gamma : float
        Mean resultant length, $0 \leq \gamma < 1$.
    rho : float
        Second-order magnitude, $0 \leq \rho < 1$.
    lam : float
        Second-order phase, $0 \leq \lambda < 2\pi$.

    Returns
    -------
    logpdf_values : array_like
        Logarithm of the probability density function evaluated at `x`.
    """
    return super().logpdf(x, mu, gamma, rho, lam, *args, **kwargs)

convert_alpha2_beta2(gamma, alpha2, beta2, *, verify=True) staticmethod

Convert second-order moment parameters to (rho, lambda).

Parameters:

Name Type Description Default
gamma float

Mean resultant length, 0 <= gamma < 1.

required
alpha2 float

Second-order cosine moment around mu.

required
beta2 float

Second-order sine moment around mu.

required
verify bool

If True (default), check that (alpha2, beta2) lies within the feasible disk for the supplied gamma and raise a ValueError if not.

True

Returns:

Name Type Description
rho float

Second-order magnitude parameter.

lam float

Second-order phase parameter in [0, 2 pi).

Source code in pycircstat2/distributions.py
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
@staticmethod
def convert_alpha2_beta2(gamma, alpha2, beta2, *, verify=True):
    """
    Convert second-order moment parameters to (rho, lambda).

    Parameters
    ----------
    gamma : float
        Mean resultant length, 0 <= gamma < 1.
    alpha2 : float
        Second-order cosine moment around mu.
    beta2 : float
        Second-order sine moment around mu.
    verify : bool, optional
        If True (default), check that (alpha2, beta2) lies within the feasible
        disk for the supplied gamma and raise a ValueError if not.

    Returns
    -------
    rho : float
        Second-order magnitude parameter.
    lam : float
        Second-order phase parameter in [0, 2 pi).
    """
    gamma = float(gamma)
    alpha2 = float(alpha2)
    beta2 = float(beta2)

    if not (0.0 <= gamma < 1.0):
        raise ValueError("`gamma` must lie in [0, 1).")

    radius_sq = (gamma * (1.0 - gamma)) ** 2
    center_alpha = gamma * gamma
    dist_sq = (alpha2 - center_alpha) ** 2 + beta2**2

    tol = 1e-12
    if verify and dist_sq > radius_sq + tol:
        raise ValueError(
            f"(alpha2, beta2) = ({alpha2}, {beta2}) is outside the feasible disk "
            f"for gamma={gamma}."
        )

    r2 = np.hypot(alpha2, beta2)
    if gamma <= katojones_gen._moment_tolerance:
        if verify and r2 > tol:
            raise ValueError(
                "When gamma is approximately zero, alpha2 and beta2 must also be near zero."
            )
        return 0.0, 0.0

    rho = float(np.clip(r2 / gamma, 0.0, 1.0 - 1e-12))
    if r2 <= tol:
        lam = 0.0
    else:
        lam = float(np.mod(np.arctan2(beta2, alpha2), 2.0 * np.pi))
    return rho, lam

convert_rho_lambda(gamma, rho, lam, *, verify=True) staticmethod

Convert (rho, lambda) parameters to second-order moments (alpha2, beta2).

Parameters:

Name Type Description Default
gamma float

Mean resultant length, 0 <= gamma < 1.

required
rho float

Second-order magnitude, 0 <= rho < 1.

required
lam float

Second-order phase, 0 <= lam < 2*pi.

required
verify bool

If True (default), ensure (gamma, rho, lam) satisfies the feasibility constraint and raise a ValueError otherwise.

True

Returns:

Name Type Description
alpha2 float

Second-order cosine moment around mu.

beta2 float

Second-order sine moment around mu.

Source code in pycircstat2/distributions.py
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
@staticmethod
def convert_rho_lambda(gamma, rho, lam, *, verify=True):
    """
    Convert (rho, lambda) parameters to second-order moments (alpha2, beta2).

    Parameters
    ----------
    gamma : float
        Mean resultant length, 0 <= gamma < 1.
    rho : float
        Second-order magnitude, 0 <= rho < 1.
    lam : float
        Second-order phase, 0 <= lam < 2*pi.
    verify : bool, optional
        If True (default), ensure (gamma, rho, lam) satisfies the feasibility
        constraint and raise a ValueError otherwise.

    Returns
    -------
    alpha2 : float
        Second-order cosine moment around mu.
    beta2 : float
        Second-order sine moment around mu.
    """
    gamma = float(gamma)
    rho = float(rho)
    lam = float(lam)

    if not (0.0 <= gamma < 1.0):
        raise ValueError("`gamma` must lie in [0, 1).")
    if not (0.0 <= rho < 1.0):
        raise ValueError("`rho` must lie in [0, 1).")

    if verify:
        constraint = (rho * np.cos(lam) - gamma) ** 2 + (rho * np.sin(lam)) ** 2
        if constraint > (1.0 - gamma) ** 2 + 1e-12:
            raise ValueError(
                f"(gamma, rho, lam)=({gamma}, {rho}, {lam}) violates the feasibility constraint."
            )

    alpha2 = float(gamma * rho * np.cos(lam))
    beta2 = float(gamma * rho * np.sin(lam))
    return alpha2, beta2