Skip to content

Distributions

circularuniform_gen

Bases: rv_continuous

Continuous Circular Uniform Distribution

circularuniform

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Source code in pycircstat2/distributions.py
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
class circularuniform_gen(rv_continuous):
    """Continuous Circular Uniform Distribution

    ![circularuniform](../images/circ-mod-circularuniform.png)

    Methods
    -------
    pdf(x)
        Probability density function.

    cdf(x)
        Cumulative distribution function.
    """

    def _pdf(self, x):
        return 1 / np.pi

    def pdf(self, x, *args, **kwargs):
        r"""
        Probability density function of the Circular Uniform distribution.

        $$
        f(\theta) = \frac{1}{\pi}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, *args, **kwargs)

    def _cdf(self, x):
        return x / (2 * np.pi)

    def cdf(self, x, *args, **kwargs):
        r"""
        Cumulative distribution function of the Circular Uniform distribution.

        $$
        F(\theta) = \frac{\theta}{2\pi}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, *args, **kwargs)

    def _ppf(self, q):
        return 2 * np.pi * q

    def ppf(self, q, *args, **kwargs):
        r"""
        Percent-point function (inverse of the CDF) of the Circular Uniform distribution.

        $$
        Q(q) = F^{-1}(q) = 2\pi q, \space 0 \leq q \leq 1
        $$

        Parameters
        ----------
        q : array_like
            Quantiles to evaluate.

        Returns
        -------
        ppf_values : array_like
            Values at the given quantiles.
        """
        return super().ppf(q, *args, **kwargs)

pdf(x, *args, **kwargs)

Probability density function of the Circular Uniform distribution.

\[ f(\theta) = \frac{1}{\pi} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def pdf(self, x, *args, **kwargs):
    r"""
    Probability density function of the Circular Uniform distribution.

    $$
    f(\theta) = \frac{1}{\pi}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, *args, **kwargs)

cdf(x, *args, **kwargs)

Cumulative distribution function of the Circular Uniform distribution.

\[ F(\theta) = \frac{\theta}{2\pi} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
def cdf(self, x, *args, **kwargs):
    r"""
    Cumulative distribution function of the Circular Uniform distribution.

    $$
    F(\theta) = \frac{\theta}{2\pi}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, *args, **kwargs)

ppf(q, *args, **kwargs)

Percent-point function (inverse of the CDF) of the Circular Uniform distribution.

\[ Q(q) = F^{-1}(q) = 2\pi q, \space 0 \leq q \leq 1 \]

Parameters:

Name Type Description Default
q array_like

Quantiles to evaluate.

required

Returns:

Name Type Description
ppf_values array_like

Values at the given quantiles.

Source code in pycircstat2/distributions.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def ppf(self, q, *args, **kwargs):
    r"""
    Percent-point function (inverse of the CDF) of the Circular Uniform distribution.

    $$
    Q(q) = F^{-1}(q) = 2\pi q, \space 0 \leq q \leq 1
    $$

    Parameters
    ----------
    q : array_like
        Quantiles to evaluate.

    Returns
    -------
    ppf_values : array_like
        Values at the given quantiles.
    """
    return super().ppf(q, *args, **kwargs)

triangular_gen

Bases: rv_continuous

Triangular Distribution

triangular

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Notes

Implementation based on Section 2.2.3 of Jammalamadaka & SenGupta (2001)

Source code in pycircstat2/distributions.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
class triangular_gen(rv_continuous):
    """Triangular Distribution

    ![triangular](../images/circ-mod-triangular.png)

    Methods
    -------
    pdf(x, rho)
        Probability density function.

    cdf(x, rho)
        Cumulative distribution function.

    Notes
    -----
    Implementation based on Section 2.2.3 of Jammalamadaka & SenGupta (2001)
    """

    def _argcheck(self, rho):
        return 0 <= rho <= 4 / np.pi**2

    def _pdf(self, x, rho):
        return (
            (4 - np.pi**2.0 * rho + 2.0 * np.pi * rho * np.abs(np.pi - x)) / 8.0 / np.pi
        )

    def pdf(self, x, rho, *args, **kwargs):
        r"""
        Probability density function of the Triangular distribution.

        $$
        f(\theta) = \frac{4 - \pi^2 \rho + 2\pi \rho |\pi - \theta|}{8\pi}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        rho : float
            Concentratio parameter, 0 <= rho <= 4/pi^2.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """

        return super().pdf(x, rho, *args, **kwargs)

    def _cdf(self, x, rho):
        @np.vectorize
        def _cdf_single(x, rho):
            integral, _ = quad(self._pdf, a=0, b=x, args=(rho))
            return integral

        return _cdf_single(x, rho)

pdf(x, rho, *args, **kwargs)

Probability density function of the Triangular distribution.

\[ f(\theta) = \frac{4 - \pi^2 \rho + 2\pi \rho |\pi - \theta|}{8\pi} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
rho float

Concentratio parameter, 0 <= rho <= 4/pi^2.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
def pdf(self, x, rho, *args, **kwargs):
    r"""
    Probability density function of the Triangular distribution.

    $$
    f(\theta) = \frac{4 - \pi^2 \rho + 2\pi \rho |\pi - \theta|}{8\pi}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    rho : float
        Concentratio parameter, 0 <= rho <= 4/pi^2.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """

    return super().pdf(x, rho, *args, **kwargs)

cardioid_gen

Bases: rv_continuous

Cardioid (cosine) Distribution

cardioid

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Notes

Implementation based on Section 4.3.4 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
class cardioid_gen(rv_continuous):
    """Cardioid (cosine) Distribution

    ![cardioid](../images/circ-mod-cardioid.png)

    Methods
    -------
    pdf(x, mu, rho)
        Probability density function.

    cdf(x, mu, rho)
        Cumulative distribution function.

    Notes
    -----
    Implementation based on Section 4.3.4 of Pewsey et al. (2014)
    """

    def _argcheck(self, mu, rho):
        return 0 <= mu <= np.pi * 2 and 0 <= rho <= 0.5

    def _pdf(self, x, mu, rho):
        return (1 + 2 * rho * np.cos(x - mu)) / 2.0 / np.pi

    def pdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Probability density function of the Cardioid distribution.

        $$
        f(\theta) = \frac{1}{2\pi} \left(1 + 2\rho \cos(\theta - \mu)\right), \space \rho \in [0, 1/2]
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Mean resultant length, 0 <= rho <= 0.5.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, rho, *args, **kwargs)

    def _cdf(self, x, mu, rho):
        return (x + 2 * rho * (np.sin(x - mu) + np.sin(mu))) / (2 * np.pi)

    def cdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Cumulative distribution function of the Cardioid distribution.

        $$
        F(\theta) = \frac{\theta + 2\rho (\sin(\mu) + \sin(\theta - \mu))}{2\pi}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Mean resultant length, 0 <= rho <= 0.5.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, rho, *args, **kwargs)

pdf(x, mu, rho, *args, **kwargs)

Probability density function of the Cardioid distribution.

\[ f(\theta) = \frac{1}{2\pi} \left(1 + 2\rho \cos(\theta - \mu)\right), \space \rho \in [0, 1/2] \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Mean resultant length, 0 <= rho <= 0.5.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
def pdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Probability density function of the Cardioid distribution.

    $$
    f(\theta) = \frac{1}{2\pi} \left(1 + 2\rho \cos(\theta - \mu)\right), \space \rho \in [0, 1/2]
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Mean resultant length, 0 <= rho <= 0.5.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, rho, *args, **kwargs)

cdf(x, mu, rho, *args, **kwargs)

Cumulative distribution function of the Cardioid distribution.

\[ F(\theta) = \frac{\theta + 2\rho (\sin(\mu) + \sin(\theta - \mu))}{2\pi} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Mean resultant length, 0 <= rho <= 0.5.

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
def cdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Cumulative distribution function of the Cardioid distribution.

    $$
    F(\theta) = \frac{\theta + 2\rho (\sin(\mu) + \sin(\theta - \mu))}{2\pi}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Mean resultant length, 0 <= rho <= 0.5.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, rho, *args, **kwargs)

cartwright_gen

Bases: rv_continuous

Cartwright's Power-of-Cosine Distribution

cartwright

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Implementation based on Section 4.3.5 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
class cartwright_gen(rv_continuous):
    """Cartwright's Power-of-Cosine Distribution

    ![cartwright](../images/circ-mod-cartwright.png)


    Methods
    -------
    pdf(x, mu, zeta)
        Probability density function.

    cdf(x, mu, zeta)
        Cumulative distribution function.

    Note
    ----
    Implementation based on Section 4.3.5 of Pewsey et al. (2014)
    """

    def _argcheck(self, mu, zeta):
        return 0 <= mu <= 2 * np.pi and zeta > 0

    def _pdf(self, x, mu, zeta):
        return (
            (2 ** (-1 + 1 / zeta) * (gamma(1 + 1 / zeta)) ** 2)
            * (1 + np.cos(x - mu)) ** (1 / zeta)
            / (np.pi * gamma(1 + 2 / zeta))
        )

    def pdf(self, x, mu, zeta, *args, **kwargs):
        r"""
        Probability density function of the Cartwright distribution.

        $$
        f(\theta) = \frac{2^{- 1+1/\zeta} \Gamma^2(1 + 1/\zeta)}{\pi \Gamma(1 + 2/\zeta)} (1 + \cos(\theta - \mu))^{1/\zeta}
        $$

        , where $\Gamma$ is the gamma function.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        zeta : float
            Shape parameter, zeta > 0.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """

        return super().pdf(x, mu, zeta, *args, **kwargs)

    def _cdf(self, x, mu, zeta):
        @np.vectorize
        def _cdf_single(x, mu, zeta):
            integral, _ = quad(self._pdf, a=0, b=x, args=(mu, zeta))
            return integral

        return _cdf_single(x, mu, zeta)

    def cdf(self, x, mu, zeta, *args, **kwargs):
        r"""
        Cumulative distribution function of the Cartwright distribution.

        No closed-form solution is available, so the CDF is computed numerically.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        zeta : float
            Shape parameter, zeta > 0.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, zeta, *args, **kwargs)

pdf(x, mu, zeta, *args, **kwargs)

Probability density function of the Cartwright distribution.

\[ f(\theta) = \frac{2^{- 1+1/\zeta} \Gamma^2(1 + 1/\zeta)}{\pi \Gamma(1 + 2/\zeta)} (1 + \cos(\theta - \mu))^{1/\zeta} \]

, where \(\Gamma\) is the gamma function.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
zeta float

Shape parameter, zeta > 0.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
def pdf(self, x, mu, zeta, *args, **kwargs):
    r"""
    Probability density function of the Cartwright distribution.

    $$
    f(\theta) = \frac{2^{- 1+1/\zeta} \Gamma^2(1 + 1/\zeta)}{\pi \Gamma(1 + 2/\zeta)} (1 + \cos(\theta - \mu))^{1/\zeta}
    $$

    , where $\Gamma$ is the gamma function.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    zeta : float
        Shape parameter, zeta > 0.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """

    return super().pdf(x, mu, zeta, *args, **kwargs)

cdf(x, mu, zeta, *args, **kwargs)

Cumulative distribution function of the Cartwright distribution.

No closed-form solution is available, so the CDF is computed numerically.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
zeta float

Shape parameter, zeta > 0.

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
def cdf(self, x, mu, zeta, *args, **kwargs):
    r"""
    Cumulative distribution function of the Cartwright distribution.

    No closed-form solution is available, so the CDF is computed numerically.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    zeta : float
        Shape parameter, zeta > 0.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, zeta, *args, **kwargs)

wrapnorm_gen

Bases: rv_continuous

Wrapped Normal Distribution

wrapnorm

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Examples:

from pycircstat2.distributions import wrapnorm
Notes

Implementation based on Section 4.3.7 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
class wrapnorm_gen(rv_continuous):
    """Wrapped Normal Distribution

    ![wrapnorm](../images/circ-mod-wrapnorm.png)

    Methods
    -------
    pdf(x, mu, rho)
        Probability density function.

    cdf(x, mu, rho)
        Cumulative distribution function.

    Examples
    --------
    ```
    from pycircstat2.distributions import wrapnorm
    ```

    Notes
    -----
    Implementation based on Section 4.3.7 of Pewsey et al. (2014)
    """

    def _argcheck(self, mu, rho):
        return 0 <= mu <= np.pi * 2 and 0 < rho < 1

    def _pdf(self, x, mu, rho):
        return (
            1
            + 2
            * np.sum([rho ** (p**2) * np.cos(p * (x - mu)) for p in range(1, 30)], 0)
        ) / (2 * np.pi)

    def pdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Probability density function of the Wrapped Normal distribution.

        $$
        f(\theta) = \frac{1}{2\pi} \left(1 + 2\sum_{p=1}^{\infty} \rho^{p^2} \cos(p(\theta - \mu))\right)
        $$

        , here we approximate the infinite sum by summing the first 30 terms.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho <= 1.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, rho, *args, **kwargs)

    def _cdf(self, x, mu, rho):
        @np.vectorize
        def _cdf_single(x, mu, rho):
            integral, _ = quad(self._pdf, a=0, b=x, args=(mu, rho))
            return integral

        return _cdf_single(x, mu, rho)

    def cdf(self, x, mu, rho, *args, **kwargs):
        """
        Cumulative distribution function of the Wrapped Normal distribution.

        No closed-form solution is available, so the CDF is computed numerically.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho <= 1.

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, rho, *args, **kwargs)

pdf(x, mu, rho, *args, **kwargs)

Probability density function of the Wrapped Normal distribution.

\[ f(\theta) = \frac{1}{2\pi} \left(1 + 2\sum_{p=1}^{\infty} \rho^{p^2} \cos(p(\theta - \mu))\right) \]

, here we approximate the infinite sum by summing the first 30 terms.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho <= 1.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
def pdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Probability density function of the Wrapped Normal distribution.

    $$
    f(\theta) = \frac{1}{2\pi} \left(1 + 2\sum_{p=1}^{\infty} \rho^{p^2} \cos(p(\theta - \mu))\right)
    $$

    , here we approximate the infinite sum by summing the first 30 terms.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho <= 1.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, rho, *args, **kwargs)

cdf(x, mu, rho, *args, **kwargs)

Cumulative distribution function of the Wrapped Normal distribution.

No closed-form solution is available, so the CDF is computed numerically.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho <= 1.

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
def cdf(self, x, mu, rho, *args, **kwargs):
    """
    Cumulative distribution function of the Wrapped Normal distribution.

    No closed-form solution is available, so the CDF is computed numerically.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho <= 1.

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, rho, *args, **kwargs)

wrapcauchy_gen

Bases: rv_continuous

Wrapped Cauchy Distribution.

wrapcauchy

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

rvs

Random variates.

fit

Fit the distribution to the data and return the parameters (mu, rho).

Notes

Implementation based on Section 4.3.6 of Pewsey et al. (2014).

Source code in pycircstat2/distributions.py
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
class wrapcauchy_gen(rv_continuous):
    """Wrapped Cauchy Distribution.

    ![wrapcauchy](../images/circ-mod-wrapcauchy.png)

    Methods
    -------
    pdf(x, mu, rho)
        Probability density function.

    cdf(x, mu, rho)
        Cumulative distribution function.

    rvs(mu, rho, size=None, random_state=None)
        Random variates.

    fit(data, method="analytical", *args, **kwargs)
        Fit the distribution to the data and return the parameters (mu, rho).

    Notes
    -----
    Implementation based on Section 4.3.6 of Pewsey et al. (2014).
    """

    def _argcheck(self, mu, rho):
        return 0 <= mu <= np.pi * 2 and 0 < rho <= 1

    def _pdf(self, x, mu, rho):
        return (1 - rho**2) / (2 * np.pi * (1 + rho**2 - 2 * rho * np.cos(x - mu)))

    def pdf(self, x, mu, rho, *args, **kwargs):
        r"""
        Probability density function of the Wrapped Cauchy distribution.

        $$
        f(\theta) = \frac{1 - \rho^2}{2\pi(1 + \rho^2 - 2\rho \cos(\theta - \mu))}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho <= 1.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, rho, *args, **kwargs)

    def _logpdf(self, x, mu, rho):
        return np.log(np.clip(self._pdf(x, mu, rho), 1e-16, None))

    def logpdf(self, x, mu, rho, *args, **kwargs):
        """
        Logarithm of the probability density function.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the log-PDF.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Mean resultant length, 0 < rho <= 1.

        Returns
        -------
        logpdf_values : array_like
            Logarithm of the probability density function evaluated at `x`.
        """
        return super().logpdf(x, mu, rho, *args, **kwargs)

    def _cdf(self, x, mu, rho):
        @np.vectorize
        def _cdf_single(x, mu, rho):
            integral, _ = quad(self._pdf, a=0, b=x, args=(mu, rho))
            return integral

        return _cdf_single(x, mu, rho)

    def cdf(self, x, mu, rho, *args, **kwargs):
        """
        Cumulative distribution function of the Wrapped Cauchy distribution.

        No closed-form solution is available, so the CDF is computed numerically.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the CDF.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Shape parameter, 0 < rho <= 1.

        Returns
        -------
        cdf_values : array_like
            CDF evaluated at `x`.
        """
        return super().cdf(x, mu, rho, *args, **kwargs)

    def _rvs(self, mu, rho, size=None, random_state=None):
        """
        Random variate generation for the Wrapped Cauchy distribution.

        Parameters
        ----------

        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        rho : float
            Mean resultant length, 0 <= rho <= 1.
        size : int or tuple, optional
            Number of samples to generate.
        random_state : RandomState, optional
            Random number generator instance.

        Returns
        -------
        samples : ndarray
            Random variates from the Wrapped Cauchy distribution.
        """
        rng = self._random_state if random_state is None else random_state

        if rho == 0:
            return rng.uniform(0, 2 * np.pi, size=size)
        elif rho == 1:
            return np.full(size, mu % (2 * np.pi))
        else:
            from scipy.stats import cauchy

            scale = -np.log(rho)
            samples = cauchy.rvs(loc=mu, scale=scale, size=size, random_state=rng)
            return np.mod(samples, 2 * np.pi)

    def fit(self, data, method="analytical", *args, **kwargs):
        """
        Fit the Wrapped Cauchy distribution to the data.

        Parameters
        ----------
        data : array_like
            Input data (angles in radians).
        method : str, optional
            The approach for fitting the distribution. Options are:
            - "analytical": Compute `rho` and `mu` using closed-form solutions.
            - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer.
            Default is "analytical".

        *args, **kwargs :
            Additional arguments passed to the optimizer (if used).

        Returns
        -------
        rho : float
            Estimated shape parameter.
        mu : float
            Estimated mean direction.
        """

        # Validate the fitting method
        valid_methods = ["analytical", "numerical"]
        if method not in valid_methods:
            raise ValueError(
                f"Invalid method '{method}'. Available methods are {valid_methods}."
            )

        # Validate the data
        if not np.all((0 <= data) & (data < 2 * np.pi)):
            raise ValueError("Data must be in the range [0, 2π).")

        # Analytical solution for the Von Mises distribution
        mu, rho = circ_mean_and_r(alpha=data)

        # Use analytical estimates for mu and rho
        if method == "analytical":
            return mu, rho
        elif method == "numerical":
            # Numerical optimization
            def nll(params):
                mu, rho = params
                if not self._argcheck(mu, rho):
                    return np.inf
                return -np.sum(self._logpdf(data, mu, rho))

            start_params = [mu, np.clip(rho, 1e-4, 1 - 1e-4)]
            bounds = [(0, 2 * np.pi), (1e-6, 1)]
            algo = kwargs.pop("algorithm", "L-BFGS-B")
            result = minimize(
                nll, start_params, bounds=bounds, method=algo, *args, **kwargs
            )
            if not result.success:
                raise RuntimeError(f"Optimization failed: {result.message}")
            mu, rho = result.x
            return mu, rho
        else:
            raise ValueError(
                "Invalid method. Supported methods are 'analytical' and " "'numerical'."
            )

pdf(x, mu, rho, *args, **kwargs)

Probability density function of the Wrapped Cauchy distribution.

\[ f(\theta) = \frac{1 - \rho^2}{2\pi(1 + \rho^2 - 2\rho \cos(\theta - \mu))} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho <= 1.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
def pdf(self, x, mu, rho, *args, **kwargs):
    r"""
    Probability density function of the Wrapped Cauchy distribution.

    $$
    f(\theta) = \frac{1 - \rho^2}{2\pi(1 + \rho^2 - 2\rho \cos(\theta - \mu))}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho <= 1.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, rho, *args, **kwargs)

logpdf(x, mu, rho, *args, **kwargs)

Logarithm of the probability density function.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the log-PDF.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Mean resultant length, 0 < rho <= 1.

required

Returns:

Name Type Description
logpdf_values array_like

Logarithm of the probability density function evaluated at x.

Source code in pycircstat2/distributions.py
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
def logpdf(self, x, mu, rho, *args, **kwargs):
    """
    Logarithm of the probability density function.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the log-PDF.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Mean resultant length, 0 < rho <= 1.

    Returns
    -------
    logpdf_values : array_like
        Logarithm of the probability density function evaluated at `x`.
    """
    return super().logpdf(x, mu, rho, *args, **kwargs)

cdf(x, mu, rho, *args, **kwargs)

Cumulative distribution function of the Wrapped Cauchy distribution.

No closed-form solution is available, so the CDF is computed numerically.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the CDF.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Shape parameter, 0 < rho <= 1.

required

Returns:

Name Type Description
cdf_values array_like

CDF evaluated at x.

Source code in pycircstat2/distributions.py
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
def cdf(self, x, mu, rho, *args, **kwargs):
    """
    Cumulative distribution function of the Wrapped Cauchy distribution.

    No closed-form solution is available, so the CDF is computed numerically.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the CDF.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Shape parameter, 0 < rho <= 1.

    Returns
    -------
    cdf_values : array_like
        CDF evaluated at `x`.
    """
    return super().cdf(x, mu, rho, *args, **kwargs)

_rvs(mu, rho, size=None, random_state=None)

Random variate generation for the Wrapped Cauchy distribution.

Parameters:

Name Type Description Default
mu float

Mean direction, 0 <= mu <= 2*pi.

required
rho float

Mean resultant length, 0 <= rho <= 1.

required
size int or tuple

Number of samples to generate.

None
random_state RandomState

Random number generator instance.

None

Returns:

Name Type Description
samples ndarray

Random variates from the Wrapped Cauchy distribution.

Source code in pycircstat2/distributions.py
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
def _rvs(self, mu, rho, size=None, random_state=None):
    """
    Random variate generation for the Wrapped Cauchy distribution.

    Parameters
    ----------

    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    rho : float
        Mean resultant length, 0 <= rho <= 1.
    size : int or tuple, optional
        Number of samples to generate.
    random_state : RandomState, optional
        Random number generator instance.

    Returns
    -------
    samples : ndarray
        Random variates from the Wrapped Cauchy distribution.
    """
    rng = self._random_state if random_state is None else random_state

    if rho == 0:
        return rng.uniform(0, 2 * np.pi, size=size)
    elif rho == 1:
        return np.full(size, mu % (2 * np.pi))
    else:
        from scipy.stats import cauchy

        scale = -np.log(rho)
        samples = cauchy.rvs(loc=mu, scale=scale, size=size, random_state=rng)
        return np.mod(samples, 2 * np.pi)

fit(data, method='analytical', *args, **kwargs)

Fit the Wrapped Cauchy distribution to the data.

Parameters:

Name Type Description Default
data array_like

Input data (angles in radians).

required
method str

The approach for fitting the distribution. Options are: - "analytical": Compute rho and mu using closed-form solutions. - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer. Default is "analytical".

'analytical'
*args

Additional arguments passed to the optimizer (if used).

()
**kwargs

Additional arguments passed to the optimizer (if used).

()

Returns:

Name Type Description
rho float

Estimated shape parameter.

mu float

Estimated mean direction.

Source code in pycircstat2/distributions.py
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
def fit(self, data, method="analytical", *args, **kwargs):
    """
    Fit the Wrapped Cauchy distribution to the data.

    Parameters
    ----------
    data : array_like
        Input data (angles in radians).
    method : str, optional
        The approach for fitting the distribution. Options are:
        - "analytical": Compute `rho` and `mu` using closed-form solutions.
        - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer.
        Default is "analytical".

    *args, **kwargs :
        Additional arguments passed to the optimizer (if used).

    Returns
    -------
    rho : float
        Estimated shape parameter.
    mu : float
        Estimated mean direction.
    """

    # Validate the fitting method
    valid_methods = ["analytical", "numerical"]
    if method not in valid_methods:
        raise ValueError(
            f"Invalid method '{method}'. Available methods are {valid_methods}."
        )

    # Validate the data
    if not np.all((0 <= data) & (data < 2 * np.pi)):
        raise ValueError("Data must be in the range [0, 2π).")

    # Analytical solution for the Von Mises distribution
    mu, rho = circ_mean_and_r(alpha=data)

    # Use analytical estimates for mu and rho
    if method == "analytical":
        return mu, rho
    elif method == "numerical":
        # Numerical optimization
        def nll(params):
            mu, rho = params
            if not self._argcheck(mu, rho):
                return np.inf
            return -np.sum(self._logpdf(data, mu, rho))

        start_params = [mu, np.clip(rho, 1e-4, 1 - 1e-4)]
        bounds = [(0, 2 * np.pi), (1e-6, 1)]
        algo = kwargs.pop("algorithm", "L-BFGS-B")
        result = minimize(
            nll, start_params, bounds=bounds, method=algo, *args, **kwargs
        )
        if not result.success:
            raise RuntimeError(f"Optimization failed: {result.message}")
        mu, rho = result.x
        return mu, rho
    else:
        raise ValueError(
            "Invalid method. Supported methods are 'analytical' and " "'numerical'."
        )

vonmises_gen

Bases: rv_continuous

Von Mises Distribution

vonmises

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

ppf

Percent-point function (inverse of CDF).

rvs

Random variates.

fit

Fit the distribution to the data and return the parameters (mu, kappa).

Examples:

from pycircstat2.distributions import vonmises
References
  • Section 4.3.8 of Pewsey et al. (2014)
Source code in pycircstat2/distributions.py
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
class vonmises_gen(rv_continuous):
    """Von Mises Distribution

    ![vonmises](../images/circ-mod-vonmises.png)

    Methods
    -------
    pdf(x, mu, kappa)
        Probability density function.

    cdf(x, mu, kappa)
        Cumulative distribution function.

    ppf(q, mu, kappa)
        Percent-point function (inverse of CDF).

    rvs(mu, kappa, size=None, random_state=None)
        Random variates.

    fit(data, *args, **kwargs)
        Fit the distribution to the data and return the parameters (mu, kappa).

    Examples
    --------
    ```
    from pycircstat2.distributions import vonmises
    ```

    References
    ----------
    - Section 4.3.8 of Pewsey et al. (2014)

    """

    _freeze_doc = """
    Freeze the distribution with specific parameters.

    Parameters
    ----------
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    rv_frozen : rv_frozen instance
        The frozen distribution instance with fixed parameters.
    """

    def __call__(self, *args, **kwds):
        return self.freeze(*args, **kwds)

    __call__.__doc__ = _freeze_doc

    def _argcheck(self, mu, kappa):
        return 0 <= mu <= np.pi * 2 and kappa > 0

    def _pdf(self, x, mu, kappa):
        return np.exp(kappa * np.cos(x - mu)) / (2 * np.pi * i0(kappa))

    def pdf(self, x, mu, kappa, *args, **kwargs):
        r"""
        Probability density function of the Von Mises distribution.

        $$
        f(\theta) = \frac{e^{\kappa \cos(\theta - \mu)}}{2\pi I_0(\kappa)}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            The mean direction of the distribution (0 <= mu <= 2*pi).
        kappa : float
            The concentration parameter of the distribution (kappa > 0).

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, kappa, *args, **kwargs)

    def _logpdf(self, x, mu, kappa):
        return kappa * np.cos(x - mu) - np.log(2 * np.pi * i0(kappa))

    def logpdf(self, x, mu, kappa, *args, **kwargs):
        """
        Logarithm of the probability density function of the Von Mises
        distribution.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the logarithm of the probability density function.
        mu : float
            The mean direction of the distribution (0 <= mu <= 2*pi).
        kappa : float
            The concentration parameter of the distribution (kappa > 0).

        Returns
        -------
        logpdf_values : array_like
            Logarithm of the probability density function evaluated at `x`.
        """
        return super().logpdf(x, mu, kappa, *args, **kwargs)

    def _cdf(self, x, mu, kappa):
        @np.vectorize
        def _cdf_single(x, mu, kappa):
            integral, _ = quad(self._pdf, a=0, b=x, args=(mu, kappa))
            return integral

        return _cdf_single(x, mu, kappa)

    def cdf(self, x, mu, kappa, *args, **kwargs):
        r"""
        Cumulative distribution function of the Von Mises distribution.

        $$
        F(\theta) = \frac{1}{2 \pi I_0(\kappa)}\int_{0}^{\theta} e^{\kappa \cos(\theta - \mu)} dx
        $$

        No closed-form solution is available, so the CDF is computed numerically.

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the cumulative distribution function.
        mu : float
            The mean direction of the distribution (0 <= mu <= 2*pi).
        kappa : float
            The concentration parameter of the distribution (kappa > 0).

        Returns
        -------
        cdf_values : array_like
            Cumulative distribution function evaluated at `x`.
        """
        return super().cdf(x, mu, kappa, *args, **kwargs)

    def ppf(self, q, mu, kappa, *args, **kwargs):
        """
        Percent-point function (inverse of the CDF) of the Von Mises distribution.

        Parameters
        ----------
        q : array_like
            Quantiles to evaluate.
        mu : float
            The mean direction of the distribution (0 <= mu <= 2*pi).
        kappa : float
            The concentration parameter of the distribution (kappa > 0).

        Returns
        -------
        ppf_values : array_like
            Values at the given quantiles.
        """
        return super().ppf(q, mu, kappa, *args, **kwargs)

    def _rvs(self, mu, kappa, size=None, random_state=None):
        # Use the random_state attribute or a new default random generator
        rng = self._random_state if random_state is None else random_state

        # Handle size being a tuple
        if size is None:
            size = 1
        num_samples = np.prod(size)  # Total number of samples

        # Best-Fisher algorithm
        a = 1 + np.sqrt(1 + 4 * kappa**2)
        b = (a - np.sqrt(2 * a)) / (2 * kappa)
        r = (1 + b**2) / (2 * b)

        def sample():
            while True:
                u1 = rng.uniform()
                z = np.cos(np.pi * u1)
                f = (1 + r * z) / (r + z)
                c = kappa * (r - f)
                u2 = rng.uniform()
                if u2 < c * (2 - c) or u2 <= c * np.exp(1 - c):
                    break
            u3 = rng.uniform()
            theta = mu + np.sign(u3 - 0.5) * np.arccos(f)
            return theta % (2 * np.pi)

        samples = np.array([sample() for _ in range(num_samples)])
        return samples

    def rvs(self, size=None, random_state=None, *args, **kwargs):
        """
        Draw random variates.

        Parameters
        ----------
        size : int or tuple, optional
            Number of samples to generate.
        random_state : RandomState, optional
            Random number generator instance.

        Returns
        -------
        samples : ndarray
            Random variates.
        """
        # Check if instance-level parameters are set
        mu = getattr(self, "mu", None)
        kappa = getattr(self, "kappa", None)

        # Override instance parameters if provided in args/kwargs
        mu = kwargs.pop("mu", mu)
        kappa = kwargs.pop("kappa", kappa)

        # Ensure required parameters are provided
        if mu is None or kappa is None:
            raise ValueError("Both 'mu' and 'kappa' must be provided.")

        # Call the private _rvs method
        return self._rvs(mu, kappa, size=size, random_state=random_state)

    def support(self, *args, **kwargs):
        return (0, 2 * np.pi)

    def mean(self, *args, **kwargs):
        """
        Circular mean of the Von Mises distribution.

        Returns
        -------
        mean : float
            The circular mean direction (in radians), equal to `mu`.
        """
        (mu, _) = self._parse_args(*args, **kwargs)[0]
        return mu

    def median(self, *args, **kwargs):
        """
        Circular median of the Von Mises distribution.

        Returns
        -------
        median : float
            The circular median direction (in radians), equal to `mu`.
        """
        return self.mean(*args, **kwargs)

    def var(self, *args, **kwargs):
        """
        Circular variance of the Von Mises distribution.

        Returns
        -------
        variance : float
            The circular variance, derived from `kappa`.
        """
        (_, kappa) = self._parse_args(*args, **kwargs)[0]
        return 1 - i1(kappa) / i0(kappa)

    def std(self, *args, **kwargs):
        """
        Circular standard deviation of the Von Mises distribution.

        Returns
        -------
        std : float
            The circular standard deviation, derived from `kappa`.
        """
        (_, kappa) = self._parse_args(*args, **kwargs)[0]
        r = i1(kappa) / i0(kappa)

        return np.sqrt(-2 * np.log(r))

    def entropy(self, *args, **kwargs):
        """
        Entropy of the Von Mises distribution.

        Returns
        -------
        entropy : float
            The entropy of the distribution.
        """
        (_, kappa) = self._parse_args(*args, **kwargs)[0]
        return -np.log(i0(kappa)) + (kappa * i1(kappa)) / i0(kappa)

    def _nnlf(self, theta, data):
        """
        Custom negative log-likelihood function for the Von Mises distribution.
        """
        mu, kappa = theta

        if not self._argcheck(mu, kappa):  # Validate parameter range
            return np.inf

        # Compute log-likelihood robustly
        log_likelihood = self._logpdf(data, mu, kappa)

        # Negative log-likelihood
        return -np.sum(log_likelihood)

    def fit(self, data, method="analytical", *args, **kwargs):
        """
        Fit the Von Mises distribution to the given data.

        Parameters
        ----------
        data : array_like
            The data to fit the distribution to. Assumes values are in radians.
        method : str, optional
            The approach for fitting the distribution. Options are:
            - "analytical": Compute `mu` and `kappa` using closed-form solutions.
            - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer.
            Default is "analytical".

            When `method="numerical"`, the optimization algorithm can be specified via `algorithm` in `kwargs`.
            Supported algorithms include any method from `scipy.optimize.minimize`, such as "L-BFGS-B" (default) or "Nelder-Mead".

        *args : tuple, optional
            Additional positional arguments passed to the optimizer (if used).
        **kwargs : dict, optional
            Additional keyword arguments passed to the optimizer (if used).

        Returns
        -------
        kappa : float
            The estimated concentration parameter of the Von Mises distribution.
        mu : float
            The estimated mean direction of the Von Mises distribution.

        Notes
        -----
        - The "analytical" method directly computes the parameters using the circular mean
        and resultant vector length (`r`) for `mu` and `kappa`, respectively.
        - For numerical methods, the negative log-likelihood (NLL) is minimized using `_nnlf` as the objective function.


        Examples
        --------
        ```python
        # MLE fitting using analytical solution
        mu, kappa = vonmises.fit(data, method="analytical")

        # MLE fitting with numerical method using L-BFGS-B
        mu, kappa = vonmises.fit(data, method="L-BFGS-B")
        ```
        """

        # Validate the fitting method
        valid_methods = ["analytical", "numerical"]
        if method not in valid_methods:
            raise ValueError(
                f"Invalid method '{method}'. Available methods are {valid_methods}."
            )

        # Validate the data
        if not np.all((0 <= data) & (data < 2 * np.pi)):
            raise ValueError("Data must be in the range [0, 2π).")

        # Analytical solution for the Von Mises distribution
        mu, r = circ_mean_and_r(alpha=data)
        kappa = circ_kappa(r=r, n=len(data))

        if method == "analytical":
            if np.isclose(r, 0):
                raise ValueError(
                    "Resultant vector length (r) is zero, e.g. uniform data or low directional bias."
                )
            return mu, kappa
        elif method == "numerical":
            # Use analytical solution as initial guess
            start_params = [mu, kappa]
            bounds = [(0, 2 * np.pi), (0, None)]  # 0 <= mu < 2*pi, kappa > 0,

            algo = kwargs.pop("algorithm", "L-BFGS-B")

            # Define the objective function (NLL) using `_nnlf`
            def nll(params):
                return self._nnlf(params, data)

            # Use the optimizer to minimize NLL
            result = minimize(
                nll, start_params, bounds=bounds, method=algo, *args, **kwargs
            )

            # Extract parameters from optimization result
            if not result.success:
                raise RuntimeError(f"Optimization failed: {result.message}")

            mu, kappa = result.x
            return mu, kappa
        else:
            raise ValueError(
                f"Invalid method '{method}'. Supported methods are 'analytical' and 'numerical'."
            )

pdf(x, mu, kappa, *args, **kwargs)

Probability density function of the Von Mises distribution.

\[ f(\theta) = \frac{e^{\kappa \cos(\theta - \mu)}}{2\pi I_0(\kappa)} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

The mean direction of the distribution (0 <= mu <= 2*pi).

required
kappa float

The concentration parameter of the distribution (kappa > 0).

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
def pdf(self, x, mu, kappa, *args, **kwargs):
    r"""
    Probability density function of the Von Mises distribution.

    $$
    f(\theta) = \frac{e^{\kappa \cos(\theta - \mu)}}{2\pi I_0(\kappa)}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, kappa, *args, **kwargs)

logpdf(x, mu, kappa, *args, **kwargs)

Logarithm of the probability density function of the Von Mises distribution.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the logarithm of the probability density function.

required
mu float

The mean direction of the distribution (0 <= mu <= 2*pi).

required
kappa float

The concentration parameter of the distribution (kappa > 0).

required

Returns:

Name Type Description
logpdf_values array_like

Logarithm of the probability density function evaluated at x.

Source code in pycircstat2/distributions.py
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
def logpdf(self, x, mu, kappa, *args, **kwargs):
    """
    Logarithm of the probability density function of the Von Mises
    distribution.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the logarithm of the probability density function.
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    logpdf_values : array_like
        Logarithm of the probability density function evaluated at `x`.
    """
    return super().logpdf(x, mu, kappa, *args, **kwargs)

cdf(x, mu, kappa, *args, **kwargs)

Cumulative distribution function of the Von Mises distribution.

\[ F(\theta) = \frac{1}{2 \pi I_0(\kappa)}\int_{0}^{\theta} e^{\kappa \cos(\theta - \mu)} dx \]

No closed-form solution is available, so the CDF is computed numerically.

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the cumulative distribution function.

required
mu float

The mean direction of the distribution (0 <= mu <= 2*pi).

required
kappa float

The concentration parameter of the distribution (kappa > 0).

required

Returns:

Name Type Description
cdf_values array_like

Cumulative distribution function evaluated at x.

Source code in pycircstat2/distributions.py
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
def cdf(self, x, mu, kappa, *args, **kwargs):
    r"""
    Cumulative distribution function of the Von Mises distribution.

    $$
    F(\theta) = \frac{1}{2 \pi I_0(\kappa)}\int_{0}^{\theta} e^{\kappa \cos(\theta - \mu)} dx
    $$

    No closed-form solution is available, so the CDF is computed numerically.

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the cumulative distribution function.
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    cdf_values : array_like
        Cumulative distribution function evaluated at `x`.
    """
    return super().cdf(x, mu, kappa, *args, **kwargs)

ppf(q, mu, kappa, *args, **kwargs)

Percent-point function (inverse of the CDF) of the Von Mises distribution.

Parameters:

Name Type Description Default
q array_like

Quantiles to evaluate.

required
mu float

The mean direction of the distribution (0 <= mu <= 2*pi).

required
kappa float

The concentration parameter of the distribution (kappa > 0).

required

Returns:

Name Type Description
ppf_values array_like

Values at the given quantiles.

Source code in pycircstat2/distributions.py
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
def ppf(self, q, mu, kappa, *args, **kwargs):
    """
    Percent-point function (inverse of the CDF) of the Von Mises distribution.

    Parameters
    ----------
    q : array_like
        Quantiles to evaluate.
    mu : float
        The mean direction of the distribution (0 <= mu <= 2*pi).
    kappa : float
        The concentration parameter of the distribution (kappa > 0).

    Returns
    -------
    ppf_values : array_like
        Values at the given quantiles.
    """
    return super().ppf(q, mu, kappa, *args, **kwargs)

rvs(size=None, random_state=None, *args, **kwargs)

Draw random variates.

Parameters:

Name Type Description Default
size int or tuple

Number of samples to generate.

None
random_state RandomState

Random number generator instance.

None

Returns:

Name Type Description
samples ndarray

Random variates.

Source code in pycircstat2/distributions.py
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
def rvs(self, size=None, random_state=None, *args, **kwargs):
    """
    Draw random variates.

    Parameters
    ----------
    size : int or tuple, optional
        Number of samples to generate.
    random_state : RandomState, optional
        Random number generator instance.

    Returns
    -------
    samples : ndarray
        Random variates.
    """
    # Check if instance-level parameters are set
    mu = getattr(self, "mu", None)
    kappa = getattr(self, "kappa", None)

    # Override instance parameters if provided in args/kwargs
    mu = kwargs.pop("mu", mu)
    kappa = kwargs.pop("kappa", kappa)

    # Ensure required parameters are provided
    if mu is None or kappa is None:
        raise ValueError("Both 'mu' and 'kappa' must be provided.")

    # Call the private _rvs method
    return self._rvs(mu, kappa, size=size, random_state=random_state)

mean(*args, **kwargs)

Circular mean of the Von Mises distribution.

Returns:

Name Type Description
mean float

The circular mean direction (in radians), equal to mu.

Source code in pycircstat2/distributions.py
895
896
897
898
899
900
901
902
903
904
905
def mean(self, *args, **kwargs):
    """
    Circular mean of the Von Mises distribution.

    Returns
    -------
    mean : float
        The circular mean direction (in radians), equal to `mu`.
    """
    (mu, _) = self._parse_args(*args, **kwargs)[0]
    return mu

median(*args, **kwargs)

Circular median of the Von Mises distribution.

Returns:

Name Type Description
median float

The circular median direction (in radians), equal to mu.

Source code in pycircstat2/distributions.py
907
908
909
910
911
912
913
914
915
916
def median(self, *args, **kwargs):
    """
    Circular median of the Von Mises distribution.

    Returns
    -------
    median : float
        The circular median direction (in radians), equal to `mu`.
    """
    return self.mean(*args, **kwargs)

var(*args, **kwargs)

Circular variance of the Von Mises distribution.

Returns:

Name Type Description
variance float

The circular variance, derived from kappa.

Source code in pycircstat2/distributions.py
918
919
920
921
922
923
924
925
926
927
928
def var(self, *args, **kwargs):
    """
    Circular variance of the Von Mises distribution.

    Returns
    -------
    variance : float
        The circular variance, derived from `kappa`.
    """
    (_, kappa) = self._parse_args(*args, **kwargs)[0]
    return 1 - i1(kappa) / i0(kappa)

std(*args, **kwargs)

Circular standard deviation of the Von Mises distribution.

Returns:

Name Type Description
std float

The circular standard deviation, derived from kappa.

Source code in pycircstat2/distributions.py
930
931
932
933
934
935
936
937
938
939
940
941
942
def std(self, *args, **kwargs):
    """
    Circular standard deviation of the Von Mises distribution.

    Returns
    -------
    std : float
        The circular standard deviation, derived from `kappa`.
    """
    (_, kappa) = self._parse_args(*args, **kwargs)[0]
    r = i1(kappa) / i0(kappa)

    return np.sqrt(-2 * np.log(r))

entropy(*args, **kwargs)

Entropy of the Von Mises distribution.

Returns:

Name Type Description
entropy float

The entropy of the distribution.

Source code in pycircstat2/distributions.py
944
945
946
947
948
949
950
951
952
953
954
def entropy(self, *args, **kwargs):
    """
    Entropy of the Von Mises distribution.

    Returns
    -------
    entropy : float
        The entropy of the distribution.
    """
    (_, kappa) = self._parse_args(*args, **kwargs)[0]
    return -np.log(i0(kappa)) + (kappa * i1(kappa)) / i0(kappa)

_nnlf(theta, data)

Custom negative log-likelihood function for the Von Mises distribution.

Source code in pycircstat2/distributions.py
956
957
958
959
960
961
962
963
964
965
966
967
968
969
def _nnlf(self, theta, data):
    """
    Custom negative log-likelihood function for the Von Mises distribution.
    """
    mu, kappa = theta

    if not self._argcheck(mu, kappa):  # Validate parameter range
        return np.inf

    # Compute log-likelihood robustly
    log_likelihood = self._logpdf(data, mu, kappa)

    # Negative log-likelihood
    return -np.sum(log_likelihood)

fit(data, method='analytical', *args, **kwargs)

Fit the Von Mises distribution to the given data.

Parameters:

Name Type Description Default
data array_like

The data to fit the distribution to. Assumes values are in radians.

required
method str

The approach for fitting the distribution. Options are: - "analytical": Compute mu and kappa using closed-form solutions. - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer. Default is "analytical".

When method="numerical", the optimization algorithm can be specified via algorithm in kwargs. Supported algorithms include any method from scipy.optimize.minimize, such as "L-BFGS-B" (default) or "Nelder-Mead".

'analytical'
*args tuple

Additional positional arguments passed to the optimizer (if used).

()
**kwargs dict

Additional keyword arguments passed to the optimizer (if used).

{}

Returns:

Name Type Description
kappa float

The estimated concentration parameter of the Von Mises distribution.

mu float

The estimated mean direction of the Von Mises distribution.

Notes
  • The "analytical" method directly computes the parameters using the circular mean and resultant vector length (r) for mu and kappa, respectively.
  • For numerical methods, the negative log-likelihood (NLL) is minimized using _nnlf as the objective function.

Examples:

# MLE fitting using analytical solution
mu, kappa = vonmises.fit(data, method="analytical")

# MLE fitting with numerical method using L-BFGS-B
mu, kappa = vonmises.fit(data, method="L-BFGS-B")
Source code in pycircstat2/distributions.py
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
def fit(self, data, method="analytical", *args, **kwargs):
    """
    Fit the Von Mises distribution to the given data.

    Parameters
    ----------
    data : array_like
        The data to fit the distribution to. Assumes values are in radians.
    method : str, optional
        The approach for fitting the distribution. Options are:
        - "analytical": Compute `mu` and `kappa` using closed-form solutions.
        - "numerical": Fit the parameters by minimizing the negative log-likelihood using an optimizer.
        Default is "analytical".

        When `method="numerical"`, the optimization algorithm can be specified via `algorithm` in `kwargs`.
        Supported algorithms include any method from `scipy.optimize.minimize`, such as "L-BFGS-B" (default) or "Nelder-Mead".

    *args : tuple, optional
        Additional positional arguments passed to the optimizer (if used).
    **kwargs : dict, optional
        Additional keyword arguments passed to the optimizer (if used).

    Returns
    -------
    kappa : float
        The estimated concentration parameter of the Von Mises distribution.
    mu : float
        The estimated mean direction of the Von Mises distribution.

    Notes
    -----
    - The "analytical" method directly computes the parameters using the circular mean
    and resultant vector length (`r`) for `mu` and `kappa`, respectively.
    - For numerical methods, the negative log-likelihood (NLL) is minimized using `_nnlf` as the objective function.


    Examples
    --------
    ```python
    # MLE fitting using analytical solution
    mu, kappa = vonmises.fit(data, method="analytical")

    # MLE fitting with numerical method using L-BFGS-B
    mu, kappa = vonmises.fit(data, method="L-BFGS-B")
    ```
    """

    # Validate the fitting method
    valid_methods = ["analytical", "numerical"]
    if method not in valid_methods:
        raise ValueError(
            f"Invalid method '{method}'. Available methods are {valid_methods}."
        )

    # Validate the data
    if not np.all((0 <= data) & (data < 2 * np.pi)):
        raise ValueError("Data must be in the range [0, 2π).")

    # Analytical solution for the Von Mises distribution
    mu, r = circ_mean_and_r(alpha=data)
    kappa = circ_kappa(r=r, n=len(data))

    if method == "analytical":
        if np.isclose(r, 0):
            raise ValueError(
                "Resultant vector length (r) is zero, e.g. uniform data or low directional bias."
            )
        return mu, kappa
    elif method == "numerical":
        # Use analytical solution as initial guess
        start_params = [mu, kappa]
        bounds = [(0, 2 * np.pi), (0, None)]  # 0 <= mu < 2*pi, kappa > 0,

        algo = kwargs.pop("algorithm", "L-BFGS-B")

        # Define the objective function (NLL) using `_nnlf`
        def nll(params):
            return self._nnlf(params, data)

        # Use the optimizer to minimize NLL
        result = minimize(
            nll, start_params, bounds=bounds, method=algo, *args, **kwargs
        )

        # Extract parameters from optimization result
        if not result.success:
            raise RuntimeError(f"Optimization failed: {result.message}")

        mu, kappa = result.x
        return mu, kappa
    else:
        raise ValueError(
            f"Invalid method '{method}'. Supported methods are 'analytical' and 'numerical'."
        )

vonmises_flattopped_gen

Bases: rv_continuous

Flat-topped von Mises Distribution

The Flat-topped von Mises distribution is a modification of the von Mises distribution that allows for more flexible peak shapes, including flattened or sharper tops, depending on the value of the shape parameter \(\nu\).

vonmises-ext

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Implementation based on Section 4.3.10 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
class vonmises_flattopped_gen(rv_continuous):
    r"""Flat-topped von Mises Distribution

    The Flat-topped von Mises distribution is a modification of the von Mises distribution
    that allows for more flexible peak shapes, including flattened or sharper tops, depending
    on the value of the shape parameter $\nu$.

    ![vonmises-ext](../images/circ-mod-vonmises-flat-topped.png)

    Methods
    -------
    pdf(x, mu, kappa, nu)
        Probability density function.

    cdf(x, mu, kappa, nu)
        Cumulative distribution function.

    Note
    ----
    Implementation based on Section 4.3.10 of Pewsey et al. (2014)
    """

    def _validate_params(self, mu, kappa, nu):
        return (0 <= mu <= np.pi * 2) and (kappa >= 0) and (-1 <= nu <= 1)

    def _argcheck(self, mu, kappa, nu):
        if self._validate_params(mu, kappa, nu):
            self._c = _c_vmft(mu, kappa, nu)
            return True
        else:
            return False

    def _pdf(self, x, mu, kappa, nu):
        return self._c * _kernel_vmft(x, mu, kappa, nu)

    def pdf(self, x, mu, kappa, nu, *args, **kwargs):
        r"""
        Probability density function of the Flat-topped von Mises distribution.

        $$
        f(\theta) = c \exp(\kappa \cos(\theta - \mu + \nu \sin(\theta - \mu)))
        $$

        , where `c` is the normalizing constant:

        $$
        c = \frac{1}{\int_{-\pi}^{\pi} \exp(\kappa \cos(\theta - \mu + \nu \sin(\theta - \mu))) d\theta}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
        mu : float
            Location parameter, $0 \leq \mu \leq 2\pi$. This is the mean direction when $\nu = 0$.
        kappa : float
            Concentration parameter, $\kappa \geq 0$. Higher values indicate a sharper peak around $\mu$.
        nu : float
            Shape parameter, $-1 \leq \nu \leq 1$. Controls the flattening or sharpening of the peak:
            - $\nu > 0$: sharper peaks.
            - $\nu < 0$: flatter peaks.

        Returns
        -------
        pdf_values : array_like
            Values of the probability density function at the specified points.


        Notes
        -----
        - The normalization constant $c$ is computed numerically, as the integral generally
        does not have a closed-form solution.
        - Special cases:
            - When $\nu = 0$, the distribution reduces to the standard von Mises distribution.
            - When $\kappa = 0$, the distribution becomes uniform on $[0, 2\pi)$.
        """
        return super().pdf(x, mu, kappa, nu, *args, **kwargs)

    def _cdf(self, x, mu, kappa, nu):
        @np.vectorize
        def _cdf_single(x, mu, kappa, nu):
            integral, _ = quad(self._pdf, a=0, b=x, args=(mu, kappa, nu))
            return integral

        return _cdf_single(x, mu, kappa, nu)

pdf(x, mu, kappa, nu, *args, **kwargs)

Probability density function of the Flat-topped von Mises distribution.

\[ f(\theta) = c \exp(\kappa \cos(\theta - \mu + \nu \sin(\theta - \mu))) \]

, where c is the normalizing constant:

\[ c = \frac{1}{\int_{-\pi}^{\pi} \exp(\kappa \cos(\theta - \mu + \nu \sin(\theta - \mu))) d\theta} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the PDF, defined on the interval \([0, 2\pi)\).

required
mu float

Location parameter, \(0 \leq \mu \leq 2\pi\). This is the mean direction when \(\nu = 0\).

required
kappa float

Concentration parameter, \(\kappa \geq 0\). Higher values indicate a sharper peak around \(\mu\).

required
nu float

Shape parameter, \(-1 \leq \nu \leq 1\). Controls the flattening or sharpening of the peak: - \(\nu > 0\): sharper peaks. - \(\nu < 0\): flatter peaks.

required

Returns:

Name Type Description
pdf_values array_like

Values of the probability density function at the specified points.

Notes
  • The normalization constant \(c\) is computed numerically, as the integral generally does not have a closed-form solution.
  • Special cases:
    • When \(\nu = 0\), the distribution reduces to the standard von Mises distribution.
    • When \(\kappa = 0\), the distribution becomes uniform on \([0, 2\pi)\).
Source code in pycircstat2/distributions.py
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
def pdf(self, x, mu, kappa, nu, *args, **kwargs):
    r"""
    Probability density function of the Flat-topped von Mises distribution.

    $$
    f(\theta) = c \exp(\kappa \cos(\theta - \mu + \nu \sin(\theta - \mu)))
    $$

    , where `c` is the normalizing constant:

    $$
    c = \frac{1}{\int_{-\pi}^{\pi} \exp(\kappa \cos(\theta - \mu + \nu \sin(\theta - \mu))) d\theta}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
    mu : float
        Location parameter, $0 \leq \mu \leq 2\pi$. This is the mean direction when $\nu = 0$.
    kappa : float
        Concentration parameter, $\kappa \geq 0$. Higher values indicate a sharper peak around $\mu$.
    nu : float
        Shape parameter, $-1 \leq \nu \leq 1$. Controls the flattening or sharpening of the peak:
        - $\nu > 0$: sharper peaks.
        - $\nu < 0$: flatter peaks.

    Returns
    -------
    pdf_values : array_like
        Values of the probability density function at the specified points.


    Notes
    -----
    - The normalization constant $c$ is computed numerically, as the integral generally
    does not have a closed-form solution.
    - Special cases:
        - When $\nu = 0$, the distribution reduces to the standard von Mises distribution.
        - When $\kappa = 0$, the distribution becomes uniform on $[0, 2\pi)$.
    """
    return super().pdf(x, mu, kappa, nu, *args, **kwargs)

jonespewsey_gen

Bases: rv_continuous

Jones-Pewsey Distribution

jonespewsey

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Implementation based on Section 4.3.9 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
class jonespewsey_gen(rv_continuous):
    """Jones-Pewsey Distribution

    ![jonespewsey](../images/circ-mod-jonespewsey.png)

    Methods
    -------
    pdf(x, mu, kappa, psi)
        Probability density function.

    cdf(x, mu, kappa, psi)
        Cumulative distribution function.


    Note
    ----
    Implementation based on Section 4.3.9 of Pewsey et al. (2014)
    """

    def _validate_params(self, mu, kappa, psi):
        return (0 <= mu <= np.pi * 2) and (kappa >= 0) and (-np.inf <= psi <= np.inf)

    def _argcheck(self, mu, kappa, psi):
        if self._validate_params(mu, kappa, psi):
            self._c = _c_jonespewsey(
                mu, kappa, psi
            )  # Precompute the normalizing constant
            return True
        else:
            return False

    def _pdf(self, x, mu, kappa, psi):

        if np.all(kappa < 0.001):
            return 1 / (2 * np.pi)
        else:
            if np.isclose(np.abs(psi), 0).all():
                return 1 / (2 * np.pi * i0(kappa)) * np.exp(kappa * np.cos(x - mu))
            else:
                return _kernel_jonespewsey(x, mu, kappa, psi) / self._c

    def pdf(self, x, mu, kappa, psi, *args, **kwargs):
        r"""
        Probability density function of the Jones-Pewsey distribution.

        $$
        f(\theta) = \frac{(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \mu))^{1/\psi}}{2\pi \cosh(\kappa \pi)}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        mu : float
            Mean direction, 0 <= mu <= 2*pi.
        kappa : float
            Concentration parameter, kappa >= 0.
        psi : float
            Shape parameter, -∞ <= psi <= ∞.

        Returns
        -------
        pdf_values : array_like
            Probability density function evaluated at `x`.
        """
        return super().pdf(x, mu, kappa, psi, *args, **kwargs)

    def _cdf(self, x, mu, kappa, psi):
        def vonmises_pdf(x, mu, kappa, psi, c):
            return c * np.exp(kappa * np.cos(x - mu))

        if np.isclose(np.abs(psi), 0).all():
            c = self._c

            @np.vectorize
            def _cdf_single(x, mu, kappa, psi, c):
                integral, _ = quad(vonmises_pdf, a=0, b=x, args=(mu, kappa, psi, c))
                return integral

            return _cdf_single(x, mu, kappa, psi, c)
        else:

            @np.vectorize
            def _cdf_single(x, mu, kappa, psi):
                integral, _ = quad(self._pdf, a=0, b=x, args=(mu, kappa, psi))
                return integral

            return _cdf_single(x, mu, kappa, psi)

pdf(x, mu, kappa, psi, *args, **kwargs)

Probability density function of the Jones-Pewsey distribution.

\[ f(\theta) = \frac{(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \mu))^{1/\psi}}{2\pi \cosh(\kappa \pi)} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
mu float

Mean direction, 0 <= mu <= 2*pi.

required
kappa float

Concentration parameter, kappa >= 0.

required
psi float

Shape parameter, -∞ <= psi <= ∞.

required

Returns:

Name Type Description
pdf_values array_like

Probability density function evaluated at x.

Source code in pycircstat2/distributions.py
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
def pdf(self, x, mu, kappa, psi, *args, **kwargs):
    r"""
    Probability density function of the Jones-Pewsey distribution.

    $$
    f(\theta) = \frac{(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \mu))^{1/\psi}}{2\pi \cosh(\kappa \pi)}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    mu : float
        Mean direction, 0 <= mu <= 2*pi.
    kappa : float
        Concentration parameter, kappa >= 0.
    psi : float
        Shape parameter, -∞ <= psi <= ∞.

    Returns
    -------
    pdf_values : array_like
        Probability density function evaluated at `x`.
    """
    return super().pdf(x, mu, kappa, psi, *args, **kwargs)

jonespewsey_sineskewed_gen

Bases: rv_continuous

Sine-Skewed Jones-Pewsey Distribution

The Sine-Skewed Jones-Pewsey distribution is a circular distribution defined on \([0, 2\pi)\) that extends the Jones-Pewsey family by incorporating a sine-based skewness adjustment.

jonespewsey-sineskewed

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Implementation based on Section 4.3.11 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
class jonespewsey_sineskewed_gen(rv_continuous):
    r"""Sine-Skewed Jones-Pewsey Distribution

    The Sine-Skewed Jones-Pewsey distribution is a circular distribution defined on $[0, 2\pi)$
    that extends the Jones-Pewsey family by incorporating a sine-based skewness adjustment.

    ![jonespewsey-sineskewed](../images/circ-mod-jonespewsey-sineskewed.png)

    Methods
    -------
    pdf(x, xi, kappa, psi, lmbd)
        Probability density function.

    cdf(x, xi, kappa, psi, lmbd)
        Cumulative distribution function.


    Note
    ----
    Implementation based on Section 4.3.11 of Pewsey et al. (2014)
    """

    def _validate_params(self, xi, kappa, psi, lmbd):
        return (
            (0 <= xi <= np.pi * 2)
            and (kappa >= 0)
            and (-np.inf <= psi <= np.inf)
            and (-1 <= lmbd <= 1)
        )

    def _argcheck(self, xi, kappa, psi, lmbd):
        if self._validate_params(xi, kappa, psi, lmbd):
            self._c = _c_jonespewsey(xi, kappa, psi)
            return True
        else:
            return False

    def _pdf(self, x, xi, kappa, psi, lmbd):

        if np.all(kappa < 0.001):
            return 1 / (2 * np.pi) * (1 + lmbd * np.sin(x - xi))
        else:
            if np.isclose(np.abs(psi), 0).all():
                return (
                    1
                    / (2 * np.pi * i0(kappa))
                    * np.exp(kappa * np.cos(x - xi))
                    * (1 + lmbd * np.sin(x - xi))
                )
            else:
                return (
                    (1 + lmbd * np.sin(x - xi))
                    * _kernel_jonespewsey(x, xi, kappa, psi)
                    / self._c
                )

    def pdf(self, x, xi, kappa, psi, lmbd, *args, **kwargs):
        r"""
        Probability density function of the Sine-Skewed Jones-Pewsey distribution.

        $$
        f(\theta) = \frac{(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \xi))^{1/\psi}}{2\pi \cosh(\kappa \pi)}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the probability density function.
        xi : float
            Direction parameter (generally not the mean), 0 <= ξ <= 2*pi.
        kappa : float
            Concentration parameter, κ >= 0. Higher values indicate a sharper peak.
        psi : float
            Shape parameter, -∞ <= ψ <= ∞. When ψ=-1, the distribution reduces to the wrapped Cauchy,
            when ψ=0, von Mises, and when ψ=1, cardioid.
        lmbd : float
            Skewness parameter, -1 < λ < 1. Controls the asymmetry introduced by the sine-skewing.

        Returns
        -------
        pdf_values: float
            Values of the probability density function at the specified points.
        """

        return super().pdf(x, xi, kappa, psi, lmbd, *args, **kwargs)

    def _cdf(self, x, xi, kappa, psi, lmbd):
        @np.vectorize
        def _cdf_single(x, xi, kappa, psi, lmbd):
            integral, _ = quad(self._pdf, a=0, b=x, args=(xi, kappa, psi, lmbd))
            return integral

        return _cdf_single(x, xi, kappa, psi, lmbd)

pdf(x, xi, kappa, psi, lmbd, *args, **kwargs)

Probability density function of the Sine-Skewed Jones-Pewsey distribution.

\[ f(\theta) = \frac{(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \xi))^{1/\psi}}{2\pi \cosh(\kappa \pi)} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the probability density function.

required
xi float

Direction parameter (generally not the mean), 0 <= ξ <= 2*pi.

required
kappa float

Concentration parameter, κ >= 0. Higher values indicate a sharper peak.

required
psi float

Shape parameter, -∞ <= ψ <= ∞. When ψ=-1, the distribution reduces to the wrapped Cauchy, when ψ=0, von Mises, and when ψ=1, cardioid.

required
lmbd float

Skewness parameter, -1 < λ < 1. Controls the asymmetry introduced by the sine-skewing.

required

Returns:

Name Type Description
pdf_values float

Values of the probability density function at the specified points.

Source code in pycircstat2/distributions.py
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
def pdf(self, x, xi, kappa, psi, lmbd, *args, **kwargs):
    r"""
    Probability density function of the Sine-Skewed Jones-Pewsey distribution.

    $$
    f(\theta) = \frac{(\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \xi))^{1/\psi}}{2\pi \cosh(\kappa \pi)}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the probability density function.
    xi : float
        Direction parameter (generally not the mean), 0 <= ξ <= 2*pi.
    kappa : float
        Concentration parameter, κ >= 0. Higher values indicate a sharper peak.
    psi : float
        Shape parameter, -∞ <= ψ <= ∞. When ψ=-1, the distribution reduces to the wrapped Cauchy,
        when ψ=0, von Mises, and when ψ=1, cardioid.
    lmbd : float
        Skewness parameter, -1 < λ < 1. Controls the asymmetry introduced by the sine-skewing.

    Returns
    -------
    pdf_values: float
        Values of the probability density function at the specified points.
    """

    return super().pdf(x, xi, kappa, psi, lmbd, *args, **kwargs)

jonespewsey_asym_gen

Bases: rv_continuous

Asymmetric Extended Jones-Pewsey Distribution

This distribution is an extension of the Jones-Pewsey family, incorporating asymmetry through a secondary parameter \(\nu\). It is defined on the circular domain \([0, 2\pi)\).

jonespewsey-asymext

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Implementation from 4.3.12 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
class jonespewsey_asym_gen(rv_continuous):
    r"""Asymmetric Extended Jones-Pewsey Distribution

    This distribution is an extension of the Jones-Pewsey family, incorporating asymmetry
    through a secondary parameter $\nu$. It is defined on the circular domain $[0, 2\pi)$.

    ![jonespewsey-asymext](../images/circ-mod-jonespewsey-asym.png)

    Methods
    -------
    pdf(x, xi, kappa, psi, nu)
        Probability density function.

    cdf(x, xi, kappa, psi, nu)
        Cumulative distribution function.


    Note
    ----
    Implementation from 4.3.12 of Pewsey et al. (2014)
    """

    def _validate_params(self, xi, kappa, psi, nu):
        return (
            (0 <= xi <= np.pi * 2)
            and (kappa >= 0)
            and (-np.inf <= psi <= np.inf)
            and (0 <= nu < 1)
        )

    def _argcheck(self, xi, kappa, psi, nu):
        if self._validate_params(xi, kappa, psi, nu):
            self._c = _c_jonespewsey_asym(xi, kappa, psi, nu)
            return True
        else:
            return False

    def _pdf(self, x, xi, kappa, psi, nu):
        return _kernel_jonespewsey_asym(x, xi, kappa, psi, nu) / self._c

    def pdf(self, x, xi, kappa, psi, nu, *args, **kwargs):
        r"""
        Probability density function (PDF) of the Asymmetric Extended Jones-Pewsey distribution.

        The PDF is given by:

        $$
        f(\theta) = \frac{k(\theta; \xi, \kappa, \psi, \nu)}{c}
        $$

        where $k(\theta; \xi, \kappa, \psi, \nu)$ is the kernel function defined as:

        $$
        k(\theta; \xi, \kappa, \psi, \nu) =
        \begin{cases}
        \exp\left(\kappa \cos(\theta - \xi + \nu \cos(\theta - \xi))\right) & \text{if } \psi = 0 \\
        \left[\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \xi + \nu \cos(\theta - \xi))\right]^{1/\psi} & \text{if } \psi \neq 0
        \end{cases}
        $$

        and $c$ is the normalization constant:

        $$
        c = \int_{-\pi}^{\pi} k(\theta; \xi, \kappa, \psi, \nu) \, d\theta
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
        xi : float
            Direction parameter, $0 \leq \xi \leq 2\pi$. This typically represents the mode of the distribution.
        kappa : float
            Concentration parameter, $\kappa \geq 0$. Higher values result in a sharper peak around $\xi$.
        psi : float
            Shape parameter, $-\infty \leq \psi \leq \infty$. When $\psi = 0$, the distribution reduces to a simpler von Mises-like form.
        nu : float
            Asymmetry parameter, $0 \leq \nu < 1$. Introduces skewness in the circular distribution.

        Returns
        -------
        pdf_values : array_like
            Values of the probability density function at the specified points.

        Notes
        -----
        - The normalization constant $c$ is computed numerically using integration.
        - Special cases:
            - When $\psi = 0$, the kernel simplifies to the von Mises-like asymmetric form.
            - When $\kappa = 0$, the distribution becomes uniform on $[0, 2\pi)$.
        """
        return super().pdf(x, xi, kappa, psi, nu, *args, **kwargs)

    def _cdf(self, x, xi, kappa, psi, nu):
        @np.vectorize
        def _cdf_single(x, xi, kappa, psi, nu):
            integral, _ = quad(self._pdf, a=0, b=x, args=(xi, kappa, psi, nu))
            return integral

        return _cdf_single(x, xi, kappa, psi, nu)

pdf(x, xi, kappa, psi, nu, *args, **kwargs)

Probability density function (PDF) of the Asymmetric Extended Jones-Pewsey distribution.

The PDF is given by:

\[ f(\theta) = \frac{k(\theta; \xi, \kappa, \psi, \nu)}{c} \]

where \(k(\theta; \xi, \kappa, \psi, \nu)\) is the kernel function defined as:

\[ k(\theta; \xi, \kappa, \psi, \nu) = \begin{cases} \exp\left(\kappa \cos(\theta - \xi + \nu \cos(\theta - \xi))\right) & \text{if } \psi = 0 \\ \left[\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \xi + \nu \cos(\theta - \xi))\right]^{1/\psi} & \text{if } \psi \neq 0 \end{cases} \]

and \(c\) is the normalization constant:

\[ c = \int_{-\pi}^{\pi} k(\theta; \xi, \kappa, \psi, \nu) \, d\theta \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the PDF, defined on the interval \([0, 2\pi)\).

required
xi float

Direction parameter, \(0 \leq \xi \leq 2\pi\). This typically represents the mode of the distribution.

required
kappa float

Concentration parameter, \(\kappa \geq 0\). Higher values result in a sharper peak around \(\xi\).

required
psi float

Shape parameter, \(-\infty \leq \psi \leq \infty\). When \(\psi = 0\), the distribution reduces to a simpler von Mises-like form.

required
nu float

Asymmetry parameter, \(0 \leq \nu < 1\). Introduces skewness in the circular distribution.

required

Returns:

Name Type Description
pdf_values array_like

Values of the probability density function at the specified points.

Notes
  • The normalization constant \(c\) is computed numerically using integration.
  • Special cases:
    • When \(\psi = 0\), the kernel simplifies to the von Mises-like asymmetric form.
    • When \(\kappa = 0\), the distribution becomes uniform on \([0, 2\pi)\).
Source code in pycircstat2/distributions.py
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
def pdf(self, x, xi, kappa, psi, nu, *args, **kwargs):
    r"""
    Probability density function (PDF) of the Asymmetric Extended Jones-Pewsey distribution.

    The PDF is given by:

    $$
    f(\theta) = \frac{k(\theta; \xi, \kappa, \psi, \nu)}{c}
    $$

    where $k(\theta; \xi, \kappa, \psi, \nu)$ is the kernel function defined as:

    $$
    k(\theta; \xi, \kappa, \psi, \nu) =
    \begin{cases}
    \exp\left(\kappa \cos(\theta - \xi + \nu \cos(\theta - \xi))\right) & \text{if } \psi = 0 \\
    \left[\cosh(\kappa \psi) + \sinh(\kappa \psi) \cos(\theta - \xi + \nu \cos(\theta - \xi))\right]^{1/\psi} & \text{if } \psi \neq 0
    \end{cases}
    $$

    and $c$ is the normalization constant:

    $$
    c = \int_{-\pi}^{\pi} k(\theta; \xi, \kappa, \psi, \nu) \, d\theta
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
    xi : float
        Direction parameter, $0 \leq \xi \leq 2\pi$. This typically represents the mode of the distribution.
    kappa : float
        Concentration parameter, $\kappa \geq 0$. Higher values result in a sharper peak around $\xi$.
    psi : float
        Shape parameter, $-\infty \leq \psi \leq \infty$. When $\psi = 0$, the distribution reduces to a simpler von Mises-like form.
    nu : float
        Asymmetry parameter, $0 \leq \nu < 1$. Introduces skewness in the circular distribution.

    Returns
    -------
    pdf_values : array_like
        Values of the probability density function at the specified points.

    Notes
    -----
    - The normalization constant $c$ is computed numerically using integration.
    - Special cases:
        - When $\psi = 0$, the kernel simplifies to the von Mises-like asymmetric form.
        - When $\kappa = 0$, the distribution becomes uniform on $[0, 2\pi)$.
    """
    return super().pdf(x, xi, kappa, psi, nu, *args, **kwargs)

inverse_batschelet_gen

Bases: rv_continuous

Inverse Batschelet distribution.

The inverse Batschelet distribution is a flexible circular distribution that allows for modeling asymmetric and peaked data. It is defined on the interval \([0, 2\pi)\).

inverse-batschelet

Methods:

Name Description
pdf

Probability density function.

cdf

Cumulative distribution function.

Note

Implementation from 4.3.13 of Pewsey et al. (2014)

Source code in pycircstat2/distributions.py
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
class inverse_batschelet_gen(rv_continuous):
    r"""Inverse Batschelet distribution.

    The inverse Batschelet distribution is a flexible circular distribution that allows for
    modeling asymmetric and peaked data. It is defined on the interval $[0, 2\pi)$.

    ![inverse-batschelet](../images/circ-mod-inverse-batschelet.png)

    Methods
    -------
    pdf(x, xi, kappa, psi, nu, lmbd)
        Probability density function.

    cdf(x, xi, kappa, psi, nu, lmbd)
        Cumulative distribution function.


    Note
    ----
    Implementation from 4.3.13 of Pewsey et al. (2014)
    """

    def _validate_params(self, xi, kappa, nu, lmbd):
        return (
            (0 <= xi <= np.pi * 2)
            and (kappa >= 0)
            and (-1 <= nu <= 1)
            and (-1 <= lmbd <= 1)
        )

    def _argcheck(self, xi, kappa, nu, lmbd):
        if self._validate_params(xi, kappa, nu, lmbd):
            self._c = _c_invbatschelet(kappa, lmbd)
            if np.isclose(lmbd, -1).all():
                self.con1, self.con2 = 0, 0
            else:
                self.con1 = (1 - lmbd) / (1 + lmbd)
                self.con2 = (2 * lmbd) / (1 + lmbd)
            return True
        else:
            return False

    def _pdf(self, x, xi, kappa, nu, lmbd):

        arg1 = _tnu(x, nu, xi)
        arg2 = _slmbdinv(arg1, lmbd)

        if np.isclose(lmbd, -1).all():
            return self._c * np.exp(kappa * np.cos(arg1 - np.sin(arg1)))
        else:
            return self._c * np.exp(kappa * np.cos(self.con1 * arg1 + self.con2 * arg2))

    def pdf(self, x, xi, kappa, nu, lmbd, *args, **kwargs):
        r"""
        Probability density function (PDF) of the inverse Batschelet distribution.

        The PDF is defined as:

        $$
        f(\theta) = c \exp\left(\kappa \cos\left(a \cdot g(\theta, \nu, \xi) + b \cdot s\left(g(\theta, \nu, \xi), \lambda\right)\right)\right)
        $$

        where:

        - $a$: Weight for the angular transformation, defined as:

        $$
        a = \frac{1 - \lambda}{1 + \lambda}
        $$

        - $b$: Weight for the skewness transformation, defined as:

        $$
        b = \frac{2 \lambda}{1 + \lambda}
        $$

        - $g(\theta, \nu, \xi)$: Angular transformation function, which incorporates $\nu$ and the location parameter $\xi$:

        $$
        g(\theta, \nu, \xi) = \theta - \xi - \nu \cdot (1 + \cos(\theta - \xi))
        $$

        - $s(z, \lambda)$: Skewness transformation function, defined as the root of the equation:

        $$
        s(z, \lambda) - 0.5 \cdot (1 + \lambda) \cdot \sin(s(z, \lambda)) = z
        $$

        - $c$: Normalization constant ensuring the PDF integrates to 1, computed as:

        $$
        c = \frac{1}{2\pi \cdot I_0(\kappa) \cdot \left(a - b \cdot \int_{-\pi}^{\pi} \exp(\kappa \cdot \cos(z - (1 - \lambda) \cdot \sin(z) / 2)) dz\right)}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
        xi : float
            Direction parameter, $0 \leq \xi \leq 2\pi$. This typically represents the mode.
        kappa : float
            Concentration parameter, $\kappa \geq 0$. Higher values result in sharper peaks around $\xi$.
        nu : float
            Shape parameter, $-1 \leq \nu \leq 1$. Controls asymmetry through angular transformation.
        lmbd : float
            Skewness parameter, $-1 \leq \lambda \leq 1$. Controls the degree of skewness in the distribution.

        Returns
        -------
        pdf_values : array_like
            Values of the probability density function at the specified points.
        """
        return super().pdf(x, xi, kappa, nu, lmbd, *args, **kwargs)

    def _cdf(self, x, xi, kappa, nu, lmbd):
        @np.vectorize
        def _cdf_single(x, xi, kappa, nu, lmbd):
            integral, _ = quad(self._pdf, a=0, b=x, args=(xi, kappa, nu, lmbd))
            return integral

        return _cdf_single(x, xi, kappa, nu, lmbd)

pdf(x, xi, kappa, nu, lmbd, *args, **kwargs)

Probability density function (PDF) of the inverse Batschelet distribution.

The PDF is defined as:

\[ f(\theta) = c \exp\left(\kappa \cos\left(a \cdot g(\theta, \nu, \xi) + b \cdot s\left(g(\theta, \nu, \xi), \lambda\right)\right)\right) \]

where:

  • \(a\): Weight for the angular transformation, defined as:
\[ a = \frac{1 - \lambda}{1 + \lambda} \]
  • \(b\): Weight for the skewness transformation, defined as:
\[ b = \frac{2 \lambda}{1 + \lambda} \]
  • \(g(\theta, \nu, \xi)\): Angular transformation function, which incorporates \(\nu\) and the location parameter \(\xi\):
\[ g(\theta, \nu, \xi) = \theta - \xi - \nu \cdot (1 + \cos(\theta - \xi)) \]
  • \(s(z, \lambda)\): Skewness transformation function, defined as the root of the equation:
\[ s(z, \lambda) - 0.5 \cdot (1 + \lambda) \cdot \sin(s(z, \lambda)) = z \]
  • \(c\): Normalization constant ensuring the PDF integrates to 1, computed as:
\[ c = \frac{1}{2\pi \cdot I_0(\kappa) \cdot \left(a - b \cdot \int_{-\pi}^{\pi} \exp(\kappa \cdot \cos(z - (1 - \lambda) \cdot \sin(z) / 2)) dz\right)} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the PDF, defined on the interval \([0, 2\pi)\).

required
xi float

Direction parameter, \(0 \leq \xi \leq 2\pi\). This typically represents the mode.

required
kappa float

Concentration parameter, \(\kappa \geq 0\). Higher values result in sharper peaks around \(\xi\).

required
nu float

Shape parameter, \(-1 \leq \nu \leq 1\). Controls asymmetry through angular transformation.

required
lmbd float

Skewness parameter, \(-1 \leq \lambda \leq 1\). Controls the degree of skewness in the distribution.

required

Returns:

Name Type Description
pdf_values array_like

Values of the probability density function at the specified points.

Source code in pycircstat2/distributions.py
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
def pdf(self, x, xi, kappa, nu, lmbd, *args, **kwargs):
    r"""
    Probability density function (PDF) of the inverse Batschelet distribution.

    The PDF is defined as:

    $$
    f(\theta) = c \exp\left(\kappa \cos\left(a \cdot g(\theta, \nu, \xi) + b \cdot s\left(g(\theta, \nu, \xi), \lambda\right)\right)\right)
    $$

    where:

    - $a$: Weight for the angular transformation, defined as:

    $$
    a = \frac{1 - \lambda}{1 + \lambda}
    $$

    - $b$: Weight for the skewness transformation, defined as:

    $$
    b = \frac{2 \lambda}{1 + \lambda}
    $$

    - $g(\theta, \nu, \xi)$: Angular transformation function, which incorporates $\nu$ and the location parameter $\xi$:

    $$
    g(\theta, \nu, \xi) = \theta - \xi - \nu \cdot (1 + \cos(\theta - \xi))
    $$

    - $s(z, \lambda)$: Skewness transformation function, defined as the root of the equation:

    $$
    s(z, \lambda) - 0.5 \cdot (1 + \lambda) \cdot \sin(s(z, \lambda)) = z
    $$

    - $c$: Normalization constant ensuring the PDF integrates to 1, computed as:

    $$
    c = \frac{1}{2\pi \cdot I_0(\kappa) \cdot \left(a - b \cdot \int_{-\pi}^{\pi} \exp(\kappa \cdot \cos(z - (1 - \lambda) \cdot \sin(z) / 2)) dz\right)}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
    xi : float
        Direction parameter, $0 \leq \xi \leq 2\pi$. This typically represents the mode.
    kappa : float
        Concentration parameter, $\kappa \geq 0$. Higher values result in sharper peaks around $\xi$.
    nu : float
        Shape parameter, $-1 \leq \nu \leq 1$. Controls asymmetry through angular transformation.
    lmbd : float
        Skewness parameter, $-1 \leq \lambda \leq 1$. Controls the degree of skewness in the distribution.

    Returns
    -------
    pdf_values : array_like
        Values of the probability density function at the specified points.
    """
    return super().pdf(x, xi, kappa, nu, lmbd, *args, **kwargs)

wrapstable_gen

Bases: rv_continuous

Wrapped Stable Distribution

  • is symmetric around \(\delta\) when \(\beta = 0\), and to be skewed to the right (left) if \(\beta > 0\) (\(\beta < 0\)).
  • can be reduced to
    • the wrapped normal distribution when \(\alpha = 2, \beta = 0\).
    • the wrapped Cauchy distribution when \(\alpha = 1, \beta = 0\).
    • the wrappd Lévy distribution when \(\alpha = 1/2, \beta = 1\)

wrapstable

References
  • Pewsey, A. (2008). The wrapped stable family of distributions as a flexible model for circular data. Computational Statistics & Data Analysis, 52(3), 1516-1523.
Source code in pycircstat2/distributions.py
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
class wrapstable_gen(rv_continuous):
    r"""
    Wrapped Stable Distribution

    - is symmetric around $\delta$ when $\beta = 0$, and to be skewed to the right (left) if $\beta > 0$ ($\beta < 0$).
    - can be reduced to
        - the wrapped normal distribution when $\alpha = 2, \beta = 0$.
        - the wrapped Cauchy distribution when $\alpha = 1, \beta = 0$.
        - the wrappd Lévy distribution when $\alpha = 1/2, \beta = 1$

    ![wrapstable](../images/circ-mod-wrapstable.png)

    References
    ----------
    - Pewsey, A. (2008). The wrapped stable family of distributions as a flexible model for circular data. Computational Statistics & Data Analysis, 52(3), 1516-1523.
    """

    def _validate_params(self, delta, alpha, beta, gamma):
        return (
            (0 <= delta <= np.pi * 2)
            and (0 < alpha <= 2)
            and (-1 < beta < 1)
            and (gamma > 0)
        )

    def _argcheck(self, delta, alpha, beta, gamma):
        if self._validate_params(delta, alpha, beta, gamma):
            return True
        else:
            return False

    def _pdf(self, x, delta, alpha, beta, gamma):

        def rho_p(p, alpha, gamma):
            return np.exp(-((gamma * p) ** alpha))

        def mu_p(p, alpha, beta, gamma, delta):
            if np.all(alpha == 1):
                mu = delta * p - 2 * beta * gamma * p * np.log(gamma * p) / np.pi
            else:
                mu = delta * p + beta * np.tan(np.pi * alpha / 2) * (
                    (gamma * p) ** alpha - gamma * p
                )
            return mu

        series_sum = 0
        for p in np.arange(1, 150):
            rho = rho_p(p, alpha, gamma)
            mu = mu_p(p, alpha, beta, gamma, delta)
            series_sum += rho * np.cos(p * x - mu)

        pdf_values = 1 / (2 * np.pi) * (1 + 2 * series_sum)

        return pdf_values

    def pdf(self, x, delta, alpha, beta, gamma, *args, **kwargs):
        r"""
        Probability density function of the Wrapped Stable distribution.

        $$
        f(\theta) = \frac{1}{2\pi} \left[1 + 2 \sum_{p=1}^{\infty} \rho_p \cos\left(p(\theta - \mu_p)\right)\right]
        $$

        , where $\rho_p$ is the $p$th mean resultant length and $\mu_p$ is the $p$th mean direction:

        $$
        \rho_p = \exp\left(-(\gamma p)^\alpha\right)
        $$

        $$
        \mu_p = 
        \begin{cases}
            \delta p + \beta \tan\left(\frac{\pi \alpha}{2}\right) \left((\gamma p)^\alpha - \gamma p\right), & \alpha \neq 1 \\
            \delta p - \beta \frac{2}{\pi} \log(\gamma p), & \text{if } \alpha = 1
        \end{cases}
        $$

        Parameters
        ----------
        x : array_like
            Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
        delta : float
            Location parameter, $0 \leq \delta \leq 2\pi$. This is the mean direction of the distribution.
        alpha : float
            Stability parameter, $0 < \alpha \leq 2$. Higher values indicate heavier tails.
        beta : float
            Skewness parameter, $-1 < \beta < 1$. Controls the asymmetry of the distribution.
        gamma : float
            Scale parameter, $\gamma > 0$. Scales the distribution.

        Returns
        -------
        pdf_values : array_like
            Values of the probability density function at the specified points.
        """
        return super().pdf(x, delta, alpha, beta, gamma, *args, **kwargs)

    def _cdf(self, x, delta, alpha, beta, gamma):

        @np.vectorize
        def _cdf_single(x, delta, alpha, beta, gamma):
            integral, _ = quad(self._pdf, a=0, b=x, args=(delta, alpha, beta, gamma))
            return integral

        return _cdf_single(x, delta, alpha, beta, gamma)

pdf(x, delta, alpha, beta, gamma, *args, **kwargs)

Probability density function of the Wrapped Stable distribution.

\[ f(\theta) = \frac{1}{2\pi} \left[1 + 2 \sum_{p=1}^{\infty} \rho_p \cos\left(p(\theta - \mu_p)\right)\right] \]

, where \(\rho_p\) is the \(p\)th mean resultant length and \(\mu_p\) is the \(p\)th mean direction:

\[ \rho_p = \exp\left(-(\gamma p)^\alpha\right) \]
\[ \mu_p = \begin{cases} \delta p + \beta \tan\left(\frac{\pi \alpha}{2}\right) \left((\gamma p)^\alpha - \gamma p\right), & \alpha \neq 1 \\ \delta p - \beta \frac{2}{\pi} \log(\gamma p), & \text{if } \alpha = 1 \end{cases} \]

Parameters:

Name Type Description Default
x array_like

Points at which to evaluate the PDF, defined on the interval \([0, 2\pi)\).

required
delta float

Location parameter, \(0 \leq \delta \leq 2\pi\). This is the mean direction of the distribution.

required
alpha float

Stability parameter, \(0 < \alpha \leq 2\). Higher values indicate heavier tails.

required
beta float

Skewness parameter, \(-1 < \beta < 1\). Controls the asymmetry of the distribution.

required
gamma float

Scale parameter, \(\gamma > 0\). Scales the distribution.

required

Returns:

Name Type Description
pdf_values array_like

Values of the probability density function at the specified points.

Source code in pycircstat2/distributions.py
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
def pdf(self, x, delta, alpha, beta, gamma, *args, **kwargs):
    r"""
    Probability density function of the Wrapped Stable distribution.

    $$
    f(\theta) = \frac{1}{2\pi} \left[1 + 2 \sum_{p=1}^{\infty} \rho_p \cos\left(p(\theta - \mu_p)\right)\right]
    $$

    , where $\rho_p$ is the $p$th mean resultant length and $\mu_p$ is the $p$th mean direction:

    $$
    \rho_p = \exp\left(-(\gamma p)^\alpha\right)
    $$

    $$
    \mu_p = 
    \begin{cases}
        \delta p + \beta \tan\left(\frac{\pi \alpha}{2}\right) \left((\gamma p)^\alpha - \gamma p\right), & \alpha \neq 1 \\
        \delta p - \beta \frac{2}{\pi} \log(\gamma p), & \text{if } \alpha = 1
    \end{cases}
    $$

    Parameters
    ----------
    x : array_like
        Points at which to evaluate the PDF, defined on the interval $[0, 2\pi)$.
    delta : float
        Location parameter, $0 \leq \delta \leq 2\pi$. This is the mean direction of the distribution.
    alpha : float
        Stability parameter, $0 < \alpha \leq 2$. Higher values indicate heavier tails.
    beta : float
        Skewness parameter, $-1 < \beta < 1$. Controls the asymmetry of the distribution.
    gamma : float
        Scale parameter, $\gamma > 0$. Scales the distribution.

    Returns
    -------
    pdf_values : array_like
        Values of the probability density function at the specified points.
    """
    return super().pdf(x, delta, alpha, beta, gamma, *args, **kwargs)