Distributions
circularuniform_gen
Bases: rv_continuous
Continuous Circular Uniform Distribution
Methods:
Name | Description |
---|---|
pdf |
Probability density function. |
cdf |
Cumulative distribution function. |
Source code in pycircstat2/distributions.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
pdf(x, *args, **kwargs)
Probability density function of the Circular Uniform distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the probability density function. |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
array_like
|
Probability density function evaluated at |
Source code in pycircstat2/distributions.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|
cdf(x, *args, **kwargs)
Cumulative distribution function of the Circular Uniform distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the cumulative distribution function. |
required |
Returns:
Name | Type | Description |
---|---|---|
cdf_values |
array_like
|
Cumulative distribution function evaluated at |
Source code in pycircstat2/distributions.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
ppf(q, *args, **kwargs)
Percent-point function (inverse of the CDF) of the Circular Uniform distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q
|
array_like
|
Quantiles to evaluate. |
required |
Returns:
Name | Type | Description |
---|---|---|
ppf_values |
array_like
|
Values at the given quantiles. |
Source code in pycircstat2/distributions.py
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
triangular_gen
Bases: rv_continuous
Triangular Distribution
Methods:
Name | Description |
---|---|
pdf |
Probability density function. |
cdf |
Cumulative distribution function. |
Notes
Implementation based on Section 2.2.3 of Jammalamadaka & SenGupta (2001)
Source code in pycircstat2/distributions.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
pdf(x, rho, *args, **kwargs)
Probability density function of the Triangular distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the probability density function. |
required |
rho
|
float
|
Concentratio parameter, 0 <= rho <= 4/pi^2. |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
array_like
|
Probability density function evaluated at |
Source code in pycircstat2/distributions.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
cardioid_gen
Bases: rv_continuous
Cardioid (cosine) Distribution
Methods:
Name | Description |
---|---|
pdf |
Probability density function. |
cdf |
Cumulative distribution function. |
Notes
Implementation based on Section 4.3.4 of Pewsey et al. (2014)
Source code in pycircstat2/distributions.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
|
pdf(x, mu, rho, *args, **kwargs)
Probability density function of the Cardioid distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the probability density function. |
required |
mu
|
float
|
Mean direction, 0 <= mu <= 2*pi. |
required |
rho
|
float
|
Mean resultant length, 0 <= rho <= 0.5. |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
array_like
|
Probability density function evaluated at |
Source code in pycircstat2/distributions.py
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
|
cdf(x, mu, rho, *args, **kwargs)
Cumulative distribution function of the Cardioid distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the cumulative distribution function. |
required |
mu
|
float
|
Mean direction, 0 <= mu <= 2*pi. |
required |
rho
|
float
|
Mean resultant length, 0 <= rho <= 0.5. |
required |
Returns:
Name | Type | Description |
---|---|---|
cdf_values |
array_like
|
Cumulative distribution function evaluated at |
Source code in pycircstat2/distributions.py
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
|
cartwright_gen
Bases: rv_continuous
Cartwright's Power-of-Cosine Distribution
Methods:
Name | Description |
---|---|
pdf |
Probability density function. |
cdf |
Cumulative distribution function. |
Note
Implementation based on Section 4.3.5 of Pewsey et al. (2014)
Source code in pycircstat2/distributions.py
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
|
pdf(x, mu, zeta, *args, **kwargs)
Probability density function of the Cartwright distribution.
, where \(\Gamma\) is the gamma function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the probability density function. |
required |
mu
|
float
|
Mean direction, 0 <= mu <= 2*pi. |
required |
zeta
|
float
|
Shape parameter, zeta > 0. |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
array_like
|
Probability density function evaluated at |
Source code in pycircstat2/distributions.py
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
|
cdf(x, mu, zeta, *args, **kwargs)
Cumulative distribution function of the Cartwright distribution.
No closed-form solution is available, so the CDF is computed numerically.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the cumulative distribution function. |
required |
mu
|
float
|
Mean direction, 0 <= mu <= 2*pi. |
required |
zeta
|
float
|
Shape parameter, zeta > 0. |
required |
Returns:
Name | Type | Description |
---|---|---|
cdf_values |
array_like
|
Cumulative distribution function evaluated at |
Source code in pycircstat2/distributions.py
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
|
wrapnorm_gen
Bases: rv_continuous
Wrapped Normal Distribution
Methods:
Name | Description |
---|---|
pdf |
Probability density function. |
cdf |
Cumulative distribution function. |
Examples:
from pycircstat2.distributions import wrapnorm
Notes
Implementation based on Section 4.3.7 of Pewsey et al. (2014)
Source code in pycircstat2/distributions.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
|
pdf(x, mu, rho, *args, **kwargs)
Probability density function of the Wrapped Normal distribution.
, here we approximate the infinite sum by summing the first 30 terms.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the probability density function. |
required |
mu
|
float
|
Mean direction, 0 <= mu <= 2*pi. |
required |
rho
|
float
|
Shape parameter, 0 < rho <= 1. |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
array_like
|
Probability density function evaluated at |
Source code in pycircstat2/distributions.py
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
|
cdf(x, mu, rho, *args, **kwargs)
Cumulative distribution function of the Wrapped Normal distribution.
No closed-form solution is available, so the CDF is computed numerically.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the cumulative distribution function. |
required |
mu
|
float
|
Mean direction, 0 <= mu <= 2*pi. |
required |
rho
|
float
|
Shape parameter, 0 < rho <= 1. |
required |
Returns:
Name | Type | Description |
---|---|---|
cdf_values |
array_like
|
Cumulative distribution function evaluated at |
Source code in pycircstat2/distributions.py
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
|
wrapcauchy_gen
Bases: rv_continuous
Wrapped Cauchy Distribution.
Methods:
Name | Description |
---|---|
pdf |
Probability density function. |
cdf |
Cumulative distribution function. |
rvs |
Random variates. |
fit |
Fit the distribution to the data and return the parameters (mu, rho). |
Notes
Implementation based on Section 4.3.6 of Pewsey et al. (2014).
Source code in pycircstat2/distributions.py
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
|
pdf(x, mu, rho, *args, **kwargs)
Probability density function of the Wrapped Cauchy distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the probability density function. |
required |
mu
|
float
|
Mean direction, 0 <= mu <= 2*pi. |
required |
rho
|
float
|
Shape parameter, 0 < rho <= 1. |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
array_like
|
Probability density function evaluated at |
Source code in pycircstat2/distributions.py
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
|
logpdf(x, mu, rho, *args, **kwargs)
Logarithm of the probability density function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the log-PDF. |
required |
mu
|
float
|
Mean direction, 0 <= mu <= 2*pi. |
required |
rho
|
float
|
Mean resultant length, 0 < rho <= 1. |
required |
Returns:
Name | Type | Description |
---|---|---|
logpdf_values |
array_like
|
Logarithm of the probability density function evaluated at |
Source code in pycircstat2/distributions.py
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
|
cdf(x, mu, rho, *args, **kwargs)
Cumulative distribution function of the Wrapped Cauchy distribution.
No closed-form solution is available, so the CDF is computed numerically.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the CDF. |
required |
mu
|
float
|
Mean direction, 0 <= mu <= 2*pi. |
required |
rho
|
float
|
Shape parameter, 0 < rho <= 1. |
required |
Returns:
Name | Type | Description |
---|---|---|
cdf_values |
array_like
|
CDF evaluated at |
Source code in pycircstat2/distributions.py
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
|
_rvs(mu, rho, size=None, random_state=None)
Random variate generation for the Wrapped Cauchy distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu
|
float
|
Mean direction, 0 <= mu <= 2*pi. |
required |
rho
|
float
|
Mean resultant length, 0 <= rho <= 1. |
required |
size
|
int or tuple
|
Number of samples to generate. |
None
|
random_state
|
RandomState
|
Random number generator instance. |
None
|
Returns:
Name | Type | Description |
---|---|---|
samples |
ndarray
|
Random variates from the Wrapped Cauchy distribution. |
Source code in pycircstat2/distributions.py
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
|
fit(data, method='analytical', *args, **kwargs)
Fit the Wrapped Cauchy distribution to the data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
array_like
|
Input data (angles in radians). |
required |
method
|
str
|
The approach for fitting the distribution. Options are:
- "analytical": Compute |
'analytical'
|
*args
|
Additional arguments passed to the optimizer (if used). |
()
|
|
**kwargs
|
Additional arguments passed to the optimizer (if used). |
()
|
Returns:
Name | Type | Description |
---|---|---|
rho |
float
|
Estimated shape parameter. |
mu |
float
|
Estimated mean direction. |
Source code in pycircstat2/distributions.py
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
|
vonmises_gen
Bases: rv_continuous
Von Mises Distribution
Methods:
Name | Description |
---|---|
pdf |
Probability density function. |
cdf |
Cumulative distribution function. |
ppf |
Percent-point function (inverse of CDF). |
rvs |
Random variates. |
fit |
Fit the distribution to the data and return the parameters (mu, kappa). |
Examples:
from pycircstat2.distributions import vonmises
References
- Section 4.3.8 of Pewsey et al. (2014)
Source code in pycircstat2/distributions.py
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 |
|
pdf(x, mu, kappa, *args, **kwargs)
Probability density function of the Von Mises distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the probability density function. |
required |
mu
|
float
|
The mean direction of the distribution (0 <= mu <= 2*pi). |
required |
kappa
|
float
|
The concentration parameter of the distribution (kappa > 0). |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
array_like
|
Probability density function evaluated at |
Source code in pycircstat2/distributions.py
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 |
|
logpdf(x, mu, kappa, *args, **kwargs)
Logarithm of the probability density function of the Von Mises distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the logarithm of the probability density function. |
required |
mu
|
float
|
The mean direction of the distribution (0 <= mu <= 2*pi). |
required |
kappa
|
float
|
The concentration parameter of the distribution (kappa > 0). |
required |
Returns:
Name | Type | Description |
---|---|---|
logpdf_values |
array_like
|
Logarithm of the probability density function evaluated at |
Source code in pycircstat2/distributions.py
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 |
|
cdf(x, mu, kappa, *args, **kwargs)
Cumulative distribution function of the Von Mises distribution.
No closed-form solution is available, so the CDF is computed numerically.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the cumulative distribution function. |
required |
mu
|
float
|
The mean direction of the distribution (0 <= mu <= 2*pi). |
required |
kappa
|
float
|
The concentration parameter of the distribution (kappa > 0). |
required |
Returns:
Name | Type | Description |
---|---|---|
cdf_values |
array_like
|
Cumulative distribution function evaluated at |
Source code in pycircstat2/distributions.py
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
|
ppf(q, mu, kappa, *args, **kwargs)
Percent-point function (inverse of the CDF) of the Von Mises distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
q
|
array_like
|
Quantiles to evaluate. |
required |
mu
|
float
|
The mean direction of the distribution (0 <= mu <= 2*pi). |
required |
kappa
|
float
|
The concentration parameter of the distribution (kappa > 0). |
required |
Returns:
Name | Type | Description |
---|---|---|
ppf_values |
array_like
|
Values at the given quantiles. |
Source code in pycircstat2/distributions.py
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
|
rvs(size=None, random_state=None, *args, **kwargs)
Draw random variates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
size
|
int or tuple
|
Number of samples to generate. |
None
|
random_state
|
RandomState
|
Random number generator instance. |
None
|
Returns:
Name | Type | Description |
---|---|---|
samples |
ndarray
|
Random variates. |
Source code in pycircstat2/distributions.py
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
|
mean(*args, **kwargs)
Circular mean of the Von Mises distribution.
Returns:
Name | Type | Description |
---|---|---|
mean |
float
|
The circular mean direction (in radians), equal to |
Source code in pycircstat2/distributions.py
895 896 897 898 899 900 901 902 903 904 905 |
|
median(*args, **kwargs)
Circular median of the Von Mises distribution.
Returns:
Name | Type | Description |
---|---|---|
median |
float
|
The circular median direction (in radians), equal to |
Source code in pycircstat2/distributions.py
907 908 909 910 911 912 913 914 915 916 |
|
var(*args, **kwargs)
Circular variance of the Von Mises distribution.
Returns:
Name | Type | Description |
---|---|---|
variance |
float
|
The circular variance, derived from |
Source code in pycircstat2/distributions.py
918 919 920 921 922 923 924 925 926 927 928 |
|
std(*args, **kwargs)
Circular standard deviation of the Von Mises distribution.
Returns:
Name | Type | Description |
---|---|---|
std |
float
|
The circular standard deviation, derived from |
Source code in pycircstat2/distributions.py
930 931 932 933 934 935 936 937 938 939 940 941 942 |
|
entropy(*args, **kwargs)
Entropy of the Von Mises distribution.
Returns:
Name | Type | Description |
---|---|---|
entropy |
float
|
The entropy of the distribution. |
Source code in pycircstat2/distributions.py
944 945 946 947 948 949 950 951 952 953 954 |
|
_nnlf(theta, data)
Custom negative log-likelihood function for the Von Mises distribution.
Source code in pycircstat2/distributions.py
956 957 958 959 960 961 962 963 964 965 966 967 968 969 |
|
fit(data, method='analytical', *args, **kwargs)
Fit the Von Mises distribution to the given data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
array_like
|
The data to fit the distribution to. Assumes values are in radians. |
required |
method
|
str
|
The approach for fitting the distribution. Options are:
- "analytical": Compute When |
'analytical'
|
*args
|
tuple
|
Additional positional arguments passed to the optimizer (if used). |
()
|
**kwargs
|
dict
|
Additional keyword arguments passed to the optimizer (if used). |
{}
|
Returns:
Name | Type | Description |
---|---|---|
kappa |
float
|
The estimated concentration parameter of the Von Mises distribution. |
mu |
float
|
The estimated mean direction of the Von Mises distribution. |
Notes
- The "analytical" method directly computes the parameters using the circular mean
and resultant vector length (
r
) formu
andkappa
, respectively. - For numerical methods, the negative log-likelihood (NLL) is minimized using
_nnlf
as the objective function.
Examples:
# MLE fitting using analytical solution
mu, kappa = vonmises.fit(data, method="analytical")
# MLE fitting with numerical method using L-BFGS-B
mu, kappa = vonmises.fit(data, method="L-BFGS-B")
Source code in pycircstat2/distributions.py
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 |
|
vonmises_flattopped_gen
Bases: rv_continuous
Flat-topped von Mises Distribution
The Flat-topped von Mises distribution is a modification of the von Mises distribution that allows for more flexible peak shapes, including flattened or sharper tops, depending on the value of the shape parameter \(\nu\).
Methods:
Name | Description |
---|---|
pdf |
Probability density function. |
cdf |
Cumulative distribution function. |
Note
Implementation based on Section 4.3.10 of Pewsey et al. (2014)
Source code in pycircstat2/distributions.py
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 |
|
pdf(x, mu, kappa, nu, *args, **kwargs)
Probability density function of the Flat-topped von Mises distribution.
, where c
is the normalizing constant:
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the PDF, defined on the interval \([0, 2\pi)\). |
required |
mu
|
float
|
Location parameter, \(0 \leq \mu \leq 2\pi\). This is the mean direction when \(\nu = 0\). |
required |
kappa
|
float
|
Concentration parameter, \(\kappa \geq 0\). Higher values indicate a sharper peak around \(\mu\). |
required |
nu
|
float
|
Shape parameter, \(-1 \leq \nu \leq 1\). Controls the flattening or sharpening of the peak: - \(\nu > 0\): sharper peaks. - \(\nu < 0\): flatter peaks. |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
array_like
|
Values of the probability density function at the specified points. |
Notes
- The normalization constant \(c\) is computed numerically, as the integral generally does not have a closed-form solution.
- Special cases:
- When \(\nu = 0\), the distribution reduces to the standard von Mises distribution.
- When \(\kappa = 0\), the distribution becomes uniform on \([0, 2\pi)\).
Source code in pycircstat2/distributions.py
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 |
|
jonespewsey_gen
Bases: rv_continuous
Jones-Pewsey Distribution
Methods:
Name | Description |
---|---|
pdf |
Probability density function. |
cdf |
Cumulative distribution function. |
Note
Implementation based on Section 4.3.9 of Pewsey et al. (2014)
Source code in pycircstat2/distributions.py
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 |
|
pdf(x, mu, kappa, psi, *args, **kwargs)
Probability density function of the Jones-Pewsey distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the probability density function. |
required |
mu
|
float
|
Mean direction, 0 <= mu <= 2*pi. |
required |
kappa
|
float
|
Concentration parameter, kappa >= 0. |
required |
psi
|
float
|
Shape parameter, -∞ <= psi <= ∞. |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
array_like
|
Probability density function evaluated at |
Source code in pycircstat2/distributions.py
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 |
|
jonespewsey_sineskewed_gen
Bases: rv_continuous
Sine-Skewed Jones-Pewsey Distribution
The Sine-Skewed Jones-Pewsey distribution is a circular distribution defined on \([0, 2\pi)\) that extends the Jones-Pewsey family by incorporating a sine-based skewness adjustment.
Methods:
Name | Description |
---|---|
pdf |
Probability density function. |
cdf |
Cumulative distribution function. |
Note
Implementation based on Section 4.3.11 of Pewsey et al. (2014)
Source code in pycircstat2/distributions.py
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 |
|
pdf(x, xi, kappa, psi, lmbd, *args, **kwargs)
Probability density function of the Sine-Skewed Jones-Pewsey distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the probability density function. |
required |
xi
|
float
|
Direction parameter (generally not the mean), 0 <= ξ <= 2*pi. |
required |
kappa
|
float
|
Concentration parameter, κ >= 0. Higher values indicate a sharper peak. |
required |
psi
|
float
|
Shape parameter, -∞ <= ψ <= ∞. When ψ=-1, the distribution reduces to the wrapped Cauchy, when ψ=0, von Mises, and when ψ=1, cardioid. |
required |
lmbd
|
float
|
Skewness parameter, -1 < λ < 1. Controls the asymmetry introduced by the sine-skewing. |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
float
|
Values of the probability density function at the specified points. |
Source code in pycircstat2/distributions.py
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 |
|
jonespewsey_asym_gen
Bases: rv_continuous
Asymmetric Extended Jones-Pewsey Distribution
This distribution is an extension of the Jones-Pewsey family, incorporating asymmetry through a secondary parameter \(\nu\). It is defined on the circular domain \([0, 2\pi)\).
Methods:
Name | Description |
---|---|
pdf |
Probability density function. |
cdf |
Cumulative distribution function. |
Note
Implementation from 4.3.12 of Pewsey et al. (2014)
Source code in pycircstat2/distributions.py
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 |
|
pdf(x, xi, kappa, psi, nu, *args, **kwargs)
Probability density function (PDF) of the Asymmetric Extended Jones-Pewsey distribution.
The PDF is given by:
where \(k(\theta; \xi, \kappa, \psi, \nu)\) is the kernel function defined as:
and \(c\) is the normalization constant:
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the PDF, defined on the interval \([0, 2\pi)\). |
required |
xi
|
float
|
Direction parameter, \(0 \leq \xi \leq 2\pi\). This typically represents the mode of the distribution. |
required |
kappa
|
float
|
Concentration parameter, \(\kappa \geq 0\). Higher values result in a sharper peak around \(\xi\). |
required |
psi
|
float
|
Shape parameter, \(-\infty \leq \psi \leq \infty\). When \(\psi = 0\), the distribution reduces to a simpler von Mises-like form. |
required |
nu
|
float
|
Asymmetry parameter, \(0 \leq \nu < 1\). Introduces skewness in the circular distribution. |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
array_like
|
Values of the probability density function at the specified points. |
Notes
- The normalization constant \(c\) is computed numerically using integration.
- Special cases:
- When \(\psi = 0\), the kernel simplifies to the von Mises-like asymmetric form.
- When \(\kappa = 0\), the distribution becomes uniform on \([0, 2\pi)\).
Source code in pycircstat2/distributions.py
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 |
|
inverse_batschelet_gen
Bases: rv_continuous
Inverse Batschelet distribution.
The inverse Batschelet distribution is a flexible circular distribution that allows for modeling asymmetric and peaked data. It is defined on the interval \([0, 2\pi)\).
Methods:
Name | Description |
---|---|
pdf |
Probability density function. |
cdf |
Cumulative distribution function. |
Note
Implementation from 4.3.13 of Pewsey et al. (2014)
Source code in pycircstat2/distributions.py
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 |
|
pdf(x, xi, kappa, nu, lmbd, *args, **kwargs)
Probability density function (PDF) of the inverse Batschelet distribution.
The PDF is defined as:
where:
- \(a\): Weight for the angular transformation, defined as:
- \(b\): Weight for the skewness transformation, defined as:
- \(g(\theta, \nu, \xi)\): Angular transformation function, which incorporates \(\nu\) and the location parameter \(\xi\):
- \(s(z, \lambda)\): Skewness transformation function, defined as the root of the equation:
- \(c\): Normalization constant ensuring the PDF integrates to 1, computed as:
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the PDF, defined on the interval \([0, 2\pi)\). |
required |
xi
|
float
|
Direction parameter, \(0 \leq \xi \leq 2\pi\). This typically represents the mode. |
required |
kappa
|
float
|
Concentration parameter, \(\kappa \geq 0\). Higher values result in sharper peaks around \(\xi\). |
required |
nu
|
float
|
Shape parameter, \(-1 \leq \nu \leq 1\). Controls asymmetry through angular transformation. |
required |
lmbd
|
float
|
Skewness parameter, \(-1 \leq \lambda \leq 1\). Controls the degree of skewness in the distribution. |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
array_like
|
Values of the probability density function at the specified points. |
Source code in pycircstat2/distributions.py
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 |
|
wrapstable_gen
Bases: rv_continuous
Wrapped Stable Distribution
- is symmetric around \(\delta\) when \(\beta = 0\), and to be skewed to the right (left) if \(\beta > 0\) (\(\beta < 0\)).
- can be reduced to
- the wrapped normal distribution when \(\alpha = 2, \beta = 0\).
- the wrapped Cauchy distribution when \(\alpha = 1, \beta = 0\).
- the wrappd Lévy distribution when \(\alpha = 1/2, \beta = 1\)
References
- Pewsey, A. (2008). The wrapped stable family of distributions as a flexible model for circular data. Computational Statistics & Data Analysis, 52(3), 1516-1523.
Source code in pycircstat2/distributions.py
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 |
|
pdf(x, delta, alpha, beta, gamma, *args, **kwargs)
Probability density function of the Wrapped Stable distribution.
, where \(\rho_p\) is the \(p\)th mean resultant length and \(\mu_p\) is the \(p\)th mean direction:
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
array_like
|
Points at which to evaluate the PDF, defined on the interval \([0, 2\pi)\). |
required |
delta
|
float
|
Location parameter, \(0 \leq \delta \leq 2\pi\). This is the mean direction of the distribution. |
required |
alpha
|
float
|
Stability parameter, \(0 < \alpha \leq 2\). Higher values indicate heavier tails. |
required |
beta
|
float
|
Skewness parameter, \(-1 < \beta < 1\). Controls the asymmetry of the distribution. |
required |
gamma
|
float
|
Scale parameter, \(\gamma > 0\). Scales the distribution. |
required |
Returns:
Name | Type | Description |
---|---|---|
pdf_values |
array_like
|
Values of the probability density function at the specified points. |
Source code in pycircstat2/distributions.py
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 |
|