Clustering
MovM
Mixture of von Mises (MovM) Clustering.
This class implements the Expectation-Maximization (EM) algorithm for clustering circular data using a mixture of von Mises distributions. It is analogous to Gaussian Mixture Models (GMM) but adapted for directional statistics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
burnin
|
int
|
Number of initial iterations before checking for convergence. |
30
|
n_clusters
|
int
|
The number of von Mises distributions (clusters) to fit. |
5
|
n_iters
|
int
|
Maximum number of iterations for the EM algorithm. |
100
|
full_cycle
|
int
|
Used for converting degree-based data into radians. |
360
|
unit
|
(degree, radian)
|
Specifies whether input data is in degrees or radians. |
"degree"
|
random_seed
|
int
|
Random seed for reproducibility. |
2046
|
threshold
|
float
|
Convergence threshold based on the negative log-likelihood difference. |
1e-16
|
Attributes:
Name | Type | Description |
---|---|---|
converged |
bool
|
Whether the algorithm has converged. |
nLL |
ndarray
|
Array of negative log-likelihood values over iterations. |
m |
ndarray
|
Cluster means (circular means). |
r |
ndarray
|
Cluster mean resultant vectors. |
p |
ndarray
|
Cluster probabilities. |
kappa |
ndarray
|
Concentration parameters for each von Mises component. |
gamma |
ndarray
|
Responsibility matrix (posterior probabilities of clusters for each data point). |
labels |
ndarray
|
The most probable cluster assignment for each data point. |
Examples:
import numpy as np
from pycircstat2.clustering import MovM
np.random.seed(42)
x1 = np.random.vonmises(mu=0, kappa=5, size=100)
x2 = np.random.vonmises(mu=np.pi, kappa=10, size=100)
x = np.concatenate([x1, x2])
np.random.shuffle(x)
movm = MovM(n_clusters=2, n_iters=200, unit="radian", random_seed=42)
movm.fit(x, verbose=False)
Source code in pycircstat2/clustering.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
_initialize(x, n_clusters_init)
Initializes cluster parameters before running the EM algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray
|
Input circular data in radians. |
required |
n_clusters_init
|
int
|
Number of initial clusters. |
required |
Returns:
Type | Description |
---|---|
tuple
|
|
Source code in pycircstat2/clustering.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
fit(X, verbose=0)
Fits the mixture of von Mises model to the given data using the EM algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
ndarray
|
Input data points in degrees or radians. |
required |
verbose
|
bool or int
|
If True, prints progress every iteration. If an integer, prints every |
0
|
Updates
- self.m : Fitted cluster means.
- self.kappa : Fitted concentration parameters.
- self.p : Fitted cluster probabilities.
- self.labels : Final cluster assignments.
Source code in pycircstat2/clustering.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
|
compute_gamma(alpha, p, m, kappa)
Computes posterior probabilities (responsibilities) for each cluster.
Returns:
Type | Description |
---|---|
ndarray
|
Cluster assignment probabilities for each data point. |
Source code in pycircstat2/clustering.py
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
compute_nLL(gamma)
Computes the negative log-likelihood.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gamma
|
ndarray
|
The responsibility matrix (posterior probabilities of clusters for each data point). |
required |
Returns:
Type | Description |
---|---|
float
|
The negative log-likelihood value. |
Source code in pycircstat2/clustering.py
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
|
compute_BIC()
Computes the Bayesian Information Criterion (BIC) for model selection.
Returns:
Type | Description |
---|---|
float
|
The computed BIC value. |
Source code in pycircstat2/clustering.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
|
predict_density(x=None, unit=None, full_cycle=None)
Predicts density estimates for given points.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray
|
Points at which to estimate the density. |
None
|
unit
|
(degree, radian)
|
Specifies whether input data is in degrees or radians. |
"degree"
|
full_cycle
|
int
|
Number of intervals for data conversion. |
None
|
Returns:
Type | Description |
---|---|
ndarray
|
Estimated density at the provided points. |
Source code in pycircstat2/clustering.py
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
|
predict(x)
Predicts cluster assignments for new data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
ndarray
|
New data points in degrees or radians. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Predicted cluster labels. |
Source code in pycircstat2/clustering.py
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
CircHAC
Hierarchical agglomerative clustering for circular (1D) data, with optional dendrogram tracking.
Each merge is recorded: (clusterA, clusterB, distance, new_cluster_size).
This is a "center-merge" approach: each cluster is represented by its circular mean, and we merge the two clusters with the smallest absolute circular difference in means (using circ_dist). The merges form a dendrogram we can plot or output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_clusters
|
int
|
Number of clusters desired. |
2
|
n_init_clusters
|
int or None
|
If None, every point starts as its own cluster (default HAC).
If a number, |
None
|
unit
|
(radian, degree)
|
If "degree", data is converted to radians internally. |
"radian"
|
full_cycle
|
int
|
For data conversion if unit="degree". |
360
|
metric
|
(center, geodesic, angularseparation, chord)
|
The distance metric used to measure the difference between cluster centers. We'll take its absolute value so that it's a nonnegative distance. |
"center"
|
random_seed
|
int
|
Not used by default, but if you add any random steps, you may set it here. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
centers_ |
(ndarray, shape(k))
|
Final cluster center angles (in radians). |
r_ |
(ndarray, shape(k))
|
Resultant vector length for each cluster. |
labels_ |
(ndarray, shape(n_samples))
|
Cluster assignment for each data point, in {0, ..., k-1}. |
merges_ |
(ndarray, shape(m, 4))
|
Dendrogram merge history: - merges_[step, 0] = ID of cluster A - merges_[step, 1] = ID of cluster B - merges_[step, 2] = distance used to merge - merges_[step, 3] = new cluster size after merge Note: these cluster IDs are the "old" ones, not necessarily 0..(k-1) at each step. |
Source code in pycircstat2/clustering.py
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
|
_initialize_clusters(X)
Initializes clusters using CircKMeans or default HAC.
Source code in pycircstat2/clustering.py
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
|
fit(X)
Perform agglomerative clustering on X
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
ndarray
|
Input angles in degrees or radians. |
required |
Returns:
Name | Type | Description |
---|---|---|
self |
CircHAC
|
|
Source code in pycircstat2/clustering.py
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|
predict(alpha)
Assign new angles to the closest cluster center.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha
|
array-like of shape (n_samples,)
|
|
required |
Returns:
Name | Type | Description |
---|---|---|
labels |
np.ndarray of shape (n_samples,)
|
|
Source code in pycircstat2/clustering.py
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
|
plot_dendrogram(ax=None, **kwargs)
Plot a rudimentary dendrogram from merges_.
This is a basic approach that uses cluster IDs directly as "labels" on the x-axis. Because cluster IDs might not be contiguous or in ascending order, the result can look jumbled. A more sophisticated approach would re-compute a consistent labeling for each step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ax
|
matplotlib Axes
|
If None, create a new figure/axes. |
None
|
**kwargs
|
dict
|
Passed along to ax.plot(), e.g. color, linewidth, etc. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
ax |
matplotlib Axes
|
|
Source code in pycircstat2/clustering.py
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
|
silhouette_score()
Compute the average silhouette for a cluster assignment on circular data.
angles: np.ndarray shape (n,) in radians labels: np.ndarray shape (n,) in {0,1,...,K-1} metric: "chord", "geodesic", "center", etc.
Returns:
Type | Description |
---|---|
float
|
The mean silhouette over all points. |
Source code in pycircstat2/clustering.py
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
|
CircKMeans
K-Means clustering for circular (1D) data.
This is analogous to standard K-Means, but uses circular distance and circular means. The algorithm is:
1) Initialize cluster centers (angles in radians). 2) Assignment step: Assign each data point to the cluster with the minimal circular distance. 3) Update step: Recompute each cluster center as the circular mean of the assigned points. 4) Repeat until convergence or max_iters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_clusters
|
int
|
Number of clusters to form. |
2
|
max_iter
|
int
|
Maximum number of iterations. |
100
|
metric
|
(center, chord, geodesic, angularseparation)
|
The distance measure used for assignment. |
"center"
|
unit
|
(degree, radian)
|
Whether input data is in degrees or radians. If "degree", we convert to radians internally. |
"degree","radian"
|
full_cycle
|
int
|
For data conversion if unit="degree". |
360
|
tol
|
float
|
Convergence threshold. If centers move less than |
1e-6
|
random_seed
|
int
|
For reproducible initialization. |
None
|
Attributes:
Name | Type | Description |
---|---|---|
centers_ |
(ndarray, shape(n_clusters))
|
The final cluster center angles (in radians). |
labels_ |
(ndarray, shape(n_samples))
|
The assigned cluster indices for each data point. |
inertia_ |
float
|
The final sum of distances (or sum of squared distances) if you prefer, from each point to its cluster center. By default, we store sum of chosen distance measure. |
Source code in pycircstat2/clustering.py
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 |
|
fit(X)
Fit the K-means on 1D circular data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
(array - like, shape(n_samples))
|
Angles in degrees (if self.unit=="degree") or radians. |
required |
Returns:
Type | Description |
---|---|
self
|
|
Source code in pycircstat2/clustering.py
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
|
predict(X)
Predict cluster assignment for new data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
(array - like, shape(n_samples))
|
|
required |
Returns:
Name | Type | Description |
---|---|---|
labels |
(ndarray, shape(n_samples))
|
|
Source code in pycircstat2/clustering.py
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 |
|